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Abstract: The recent advent of diffractive deep neural networks or D2NNs has opened new
avenues for the design and optimization of multi-functional optical materials; despite the
effectiveness of the D2NN approach, there is a need for making these networks as well as the
design algorithms more general and computationally efficient. The work demonstrated in this
paper brings significant improvements to both these areas by introducing an algorithm that
performs inverse design on fully nonlinear diffractive deep neural network - assisted by an adjoint
sensitivity analysis which we term (DNA)2. As implied by the name, the procedure optimizes the
parameters associated with the diffractive elements including both linear and nonlinear amplitude
and phase contributions as well as the spacing between planes via adjoint sensitivity analysis. The
computation of all gradients can be obtained in a single GPU compatible step. We demonstrate
the capability of this approach by designing several types of three layered D2NN to classify 8800
handwritten digits taken from the MNIST database. In all cases, the D2NN was able to achieve a
minimum 94.64% classification accuracy with 192 minutes or less of training.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

There are striking similarities between the mathematics and concepts governing optical wave
propagation and those of artificial neural networks (ANNs) [1–4]. Perhaps the most straightforward
example is illustrated in the recently reported diffractive deep neural networks (D2NN) – a
specialized dense ANN prudently constrained to mimic diffractive-scale wave propagation [5].
In the D2NN perspective, the nodes, layers, and edges of the network directly correspond to
discretized electric field values, propagation distances, and point-source wavelets, respectively.
Known as the Huygens-Fresnel principle, electric field values at further distances are found by
fully superimposing secondary wavelet contributions emanating from the current plane; this
concept is mirrored in D2NNs by the repeated application of weighted sums to update node
values layer-by-layer.

The benefit of the D2NN approach is realized with the introduction of training data as there
is no simple analog in the wave propagation perspective. By training the D2NN on pairs of
object/image plane electromagnetic field profiles to serve as input/output training data, one can
effectively design a cascade of passive optical elements that can negotiate multiple propagation
requirements [5,6]. Equipped with this powerful capability, the design of all-optical elements have
been harnessed, generalized, and improved mostly in the context of classification schemes [7–10].
Beyond the confines of classification, D2NNs have also found utility in optics-focused applications
including beam steering [11], frequency control [12], and mode differentiation [13–15]. In such
a short period of time, the novel material design possibilities and application spaces inspired by
D2NNs have expanded quickly – yet there still exists gaps in the original methodology. Currently,
the main improvement zones fit into two categories: generalizing D2NNs and increasing the
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computational accuracy of D2NNs. Examples of the former include addressing the need to
handle true complex numbers rather than independently tracking amplitudes and phases [16],
as well as the proper encoding of nonlinear activation functions [17]. Optical analogues to
nonlinear activation functions and biases as seen in traditional ANN had been discussed in the
supplemental materials of [5], with several promising avenues of study put forward. Despite the
successful experimental demonstration of D2NN to the MNIST classifier problem, the absence of
nonlinearity in the constructed network was a source of contention [18,19]. Many authors would
later go on to explore and apply nonlinearity using photorefractive based approaches similar to
those initially proposed in [5], resulting in Fourier space networks, residual networks, and in-situ
trained networks [20–22]. In each case an increased computational accuracy compared to purely
linear networks was observed.

In this work, we demonstrate significant improvements to both the generalization and the
computational efficiency of D2NNs by introducing an optimization algorithm for optimizing
fully nonlinear complex-valued diffractive deep neural network computationally assisted by an
adjoint method referred to here as (DNA)2. In the original procedure, the most computationally
expensive step in each training iteration occurs during the gradient descent calculation. The
gradient must be obtained by individually calculating the derivative of the loss function with
respect to each complex-valued parameter at each node. These calculations involved repeated
applications of a modified version of the the forward propagation algorithm the number of
which scaled linearly with the number of parameters being optimized. Instead, (DNA)2 is
derived via an adjoint approach that returns the entire gradient using a single application of a
GPU-compatible modified version of the forward propagation algorithm. Simply put, (DNA)2

removes the linear dependence on the number of parameters entirely. Our adjoint procedure is
an advance to those seen previously in D2NN [22], being a generalized complex-valued format
with an arbitrary parameterized nonlinear activation function. Furthermore, it is compatible with
both transmission amplitude and phase light modulators (TAPLM) and optically addressable
spatial light modulators (OASLM). Optimization is both simple and efficient for any parameter
associated with the linear and nonlinear response of the materials that compose each layer in a
D2NN as well as the spacing between layers.

2. (DNA)2 for transmissive amplitude and phase light modulators (TAPLM)

Our method applies the perturbative approach outlined in [23] to the problem of scalar diffraction
theory. We begin our description of (DNA)2 with forward propagation. In standard systems, the
incident field impinges upon a TAPLM (see Fig. 1). In this regime, the behavior can be described
using a discretized form of Rayleigh-Sommerfeld diffraction which models the evolution of scalar
electric fields:

u(xm, yn; zp+1) =
N∑︂
i

N∑︂
j

U(xi, yj; zp)Hmnij(∆zp)∆x∆y

U(xi, yj; zp) = A(xi, yj; zp)u(xi, yj; zp)

Hmnij(∆zp) =
(︃

e𝒾krmnij

2πrmnij

)︃ (︃
∆zp

rmnij

)︃ (︃
1

rmnij
− 𝒾k

)︃ (1)

Here, u(xi, yj; zp) is the 2D array of the transverse complex electric field values impinging
upon the pth layer of the network at a position zp. This array has dimensions NxN where N
is the number of discretized nodal points along the {x, y} directions. Each entry is separated
by a constant spatial resolution {∆x,∆y} and tracked by indices {i, j}. Eq. 1 provides the
connection between this current network layer and the next hidden layer at a further position
zp+1 separated by a propagation distance, ∆zp = zp+1 − zp. The field impinging the next hidden
layer, u(xm, yn; zp+1), has the same dimensions and spatial resolution as before, but is tracked
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𝑧𝑝+1 separated by a propagation distance, Δ𝑧𝑝 = 𝑧𝑝+1 − 𝑧𝑝 . The field impinging the next hidden
layer, 𝑢(𝑥𝑚, 𝑦𝑛; 𝑧𝑝+1), has the same dimensions and spatial resolution as before, but is tracked
with a different set of indices {𝑚, 𝑛}. Each impinging field encounters an adjustable complex
aperture function, 𝐴(𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝), which after interacting generates a field immediately after
labeled 𝑈 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝). Connecting any two consecutive layers is the fixed Rayleigh-Sommerfeld
diffraction kernel, 𝐻𝑚𝑛𝑖 𝑗 (Δ𝑧𝑝). The latter is dependent on the radial spacing between subsequent
layer nodes, 𝑟𝑚𝑛𝑖 𝑗 = [(𝑥𝑖 − 𝑥𝑚)2 + (𝑦 𝑗 − 𝑦𝑛)2 + Δ𝑧2

𝑝]1/2.

Fig. 1. Working principle of the transmissive amplitude and phase modulator (TAPLM)
vs the optically addressable spatial-light modulator (OASLM) for D2NN applications.
A TAPLM modulates the phase and/or amplitude of an incident field 𝑢(𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝) via
linear or nonlinear processes allowing the optical field to potentially propagate directly
from the previous layer to the next. The OASLM, on the other hand, uses an incident
field from the previous layer to modulate the phase and/or amplitude of a separate read
field 𝑢𝑟 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝) that is instead propagated forward to then next layer. The majority
of the incident field 𝑢(𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝) is assumed to be absorbed preventing any of the
optical energy from propagating forward.

Imposing a convention, we define 𝑝 = 1 as the input layer at a distance 𝑧1 = 0 and 𝑝 = 𝒫

as the output layer at a distance 𝑧𝒫. Eq.1 is then used to progress through each hidden
layer resulting in a network depth equal to 𝒫 − 1 layers with adjustable aperture functions
at distances {𝑧1, 𝑧2, 𝑧3, ..., 𝑧𝒫−1}. Having defined the network architecture, we can introduce
training data. The training set size is given by 𝑄 where each 𝑞 ∈ 𝑄 contains an input field
condition, 𝑢𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧1), and a desired target output field condition, 𝑢̄𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝒫). In this
notation, the overhead bar conveys that this is the desired or supervised target value. Alternatively,
we may also wish to optimize the output to a desired phase. This can be done holographically by
interfering 𝑢𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝒫) with a reference field 𝑢𝑟𝑒 𝑓 (𝑥𝑚, 𝑦𝑛; 𝑧𝒫). The interferogram resulting
from the superposition of the two fields labeled:

𝑢𝑖𝑛𝑡 ,𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝑝) = 𝑢𝑞 (𝑥𝑚, 𝑦𝑛; 𝑧𝒫) + 𝑢𝑟𝑒 𝑓 (𝑥𝑚, 𝑦𝑛; 𝑧𝒫) (2)

is then optimized corresponding to the desired output profile 𝑢̄𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝒫). Lastly, we may want
a system where the output power flowing through a 𝑣𝑡ℎ target region 𝑡𝑣 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧𝒫) is higher than

Fig. 1. Working principle of the transmissive amplitude and phase modulator (TAPLM)
vs the optically addressable spatial-light modulator (OASLM) for D2NN applications. A
TAPLM modulates the phase and/or amplitude of an incident field u(xi, yj; zp) via linear
or nonlinear processes allowing the optical field to potentially propagate directly from the
previous layer to the next. The OASLM, on the other hand, uses an incident field from the
previous layer to modulate the phase and/or amplitude of a separate read field ur(xi, yj; zp)
that is instead propagated forward to then next layer. The majority of the incident field
u(xi, yj; zp) is assumed to be absorbed preventing any of the optical energy from propagating
forward.

with a different set of indices {m, n}. Each impinging field encounters an adjustable complex
aperture function, A(xi, yj; zp), which after interacting generates a field immediately after labeled
U(xi, yj; zp). Connecting any two consecutive layers is the fixed Rayleigh-Sommerfeld diffraction
kernel, Hmnij(∆zp). The latter is dependent on the radial spacing between subsequent layer nodes,
rmnij = [(xi − xm)2 + (yj − yn)2 + ∆z2

p]1/2.
Imposing a convention, we define p = 1 as the input layer at a distance z1 = 0 and p = 𝒫

as the output layer at a distance z𝒫 . Eq. 1 is then used to progress through each hidden layer
resulting in a network depth equal to 𝒫 − 1 layers with adjustable aperture functions at distances
{z1, z2, z3, . . . , z𝒫 −1}. Having defined the network architecture, we can introduce training data.
The training set size is given by Q where each q ∈ Q contains an input field condition, uq(xi, yj; z1),
and a desired target output field condition, ūq(xi, yj; z𝒫 ). In this notation, the overhead bar conveys
that this is the desired or supervised target value. Alternatively, we may also wish to optimize the
output to a desired phase. This can be done holographically by interfering uq(xi, yj; z𝒫 ) with a
reference field uref (xm, yn; z𝒫 ). The interferogram resulting from the superposition of the two
fields labeled:

uint,q(xi, yj; zp) = uq(xm, yn; z𝒫 ) + uref (xm, yn; z𝒫 ) (2)

is then optimized corresponding to the desired output profile ūq(xi, yj; z𝒫 ). Lastly, we may want
a system where the output power flowing through a vth target region tv(xi, yj; z𝒫 ) is higher than
any other from a set of 𝒱 regions for a given uq(xi, yj; z1). With v ∈ 𝒱 , the total power flowing
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through the vth specified target region Pq,v (z𝒫 ) is given by the formula:

Pq,v (z𝒫 ) =
N∑︂
i

N∑︂
j

tv(xi, yj; z𝒫 )|uq(xi, yj; z𝒫 )|2∆x∆y (3)

With our training parameters defined we can now progress to the core of the training routine
(DNA)2. Using Eq. 1, for every input layer in Q we can propagate the evolved field to the output
layer and obtain uq(xm, yn; z𝒫 ). We then assign an amount of error relative to the corresponding
target via a figure of merit (FOM). The choice of FOM can be important in guiding convergence
depending on the scenario; some commonly used intensity based FOM are given in Table 1.
Choosing a FOM now guides the backpropagation process – an iterative procedure which adjusts
network weights and biases such that the input conditions best match the target across every
training pair. The cases of ID, PD, and GS based FOM are analogous to more traditional mean
squared errors observed in ANN. The CCE based FOM as its name suggest, combines the softmax
function σq,v (z𝒫 ) defined here as:

σq,v (z𝒫 ) = ePq,v(z𝒫 )

𝒱∑︁
v′

ePq,v′ (z𝒫 )
(4)

with categorical cross entropy to maximize the power flow through a given region relative to any
other. This FOM is particularly useful for classifiers as it penalizes misclassification where the
others (ID, PD, and GS) simply penalize differences between the output field intensity and the
target field intensity.

Table 1. Useful Figures of Merit (FOM) Based on Calculated and
Target Fields.

Name FOM(xi, yj; z𝒫 )

Intensity Difference (ID)
1
Q

Q∑︁
q

(︂
|uq(xi, yj; z𝒫 ) |2 − |ūq(xi, yj; z𝒫 ) |2

)︂2

Phase Difference (PD)
1
Q

Q∑︁
q

(︂
|uint,q(xi, yj; z𝒫 ) |2 − |ūq(xi, yj; z𝒫 ) |2

)︂2

Gerchberg-Saxton (GS)
1
Q

Q∑︁
q

(︁ |uq(xi, yj; z𝒫 ) | − |ūq(xi, yj; z𝒫 ) |)︁2
Categorical Cross Entropy (CCE) − 1

𝒱

𝒱∑︁
v

ln
(︁
σq,v (z𝒫 ))︁

Regardless of the FOM in the D2NN context, the computational bottleneck is in retrieving the
gradient of the FOM with respect to the parameters we wish to optimize such as phase delay and
absorption. We denote this gradient function, keeping in mind that it was derived perturbatively,
as ∆FOM /∆ϱ . The variable ϱ in this context simply denotes the parameter we are trying to
optimize and changes to it via our gradient descent algorithm must be sufficiently small for
perturbation analysis to be valid [23]. In previous diffractive neural network approaches, the
gradient function is cast with respect to the phase or amplitude modulation of each pixel in the
previous zp−1 plane via the chain rule. The adjustments are then made by utilizing gradient
descent. The standard approach for the backpropagation of errors in the context of D2NN is
discussed in [5,11] which we will summarize.

The standard gradient descent algorithm is physically equivalent to a point-by-point aperture
scan of a pixel sized pinhole coupled with a π /2 phase shift at the opening over the pixels
elements of a D2NN (see Eq.7 in [11]). The phase shifted pinhole is applied to the pixel that
we wish to obtain gradients for. To this system, we apply the algorithm used in the forward
propagation (i.e. solve Eq. 1) to calculate the corresponding field at the output plane 𝒫 for
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a given input. This new field is equivalent to the gradient of the output field with respect to
the the pixel’s phase delay. Similarly, one can obtain field gradients with respect to amplitude
modulation of a given pixel by omitting the π /2 phase shift on the pinhole. The output field
gradient along with the output field itself is then used to calculate the gradient of the FOM with
respect to that pixel (see Eq. 6 in [11]). In order to obtain the FOM gradients for every pixel in
the D2NN system, we must slide the pinhole over each pixel one by one and repeatedly use the
forward propagation algorithm to calculate their respective field gradients. Additionally, this
process must be repeated for every input image used to calculate the FOM. Thus in order to
obtain all FOM gradients for every pixel (N2) on every layer (𝒫 − 1) for every input image used
(Q), the forward algorithm must be invoked N2 ×Q × (𝒫 − 1) times. For optimizing large D2NN
this may require a large amount of computational resources and be very time consuming even for
the most efficient of forward propagation routines.

Our procedure moving forward seeks to avoid this computational bottleneck while also being
sufficiently general to incorporate nonlinearity. Adjoint methods excel in the electromagnetic
inverse design space because for every input they only need a single invokation of the forward
algorithm to obtain all the field gradients with respect to all design parameters regardless of
the number being optimized [23–25]. This is done by backpropagating an adjoint field through
the system, which like the standard approach, is combined with the fields calculated during the
forward propagation process to obtain FOM gradients. By using this adjoint approach the number
of times the forward routine needs to be invoked decreases from N2 × Q × (𝒫 − 1) to Q.

In the following, we drop the q-subscripts used in the fields and intensity terms with the
implicit understanding that the network is only completely trained after it has been repeated
for each q ∈ Q. The (DNA)2 formulation allows for both intensity dependent and independent
amplitudes and phases at each hidden layer. This is encoded into the complex aperture function
by:

A(xi, yj; zp) = A1(xi, yj; zp) ∗ A2(xi, yj; zp)
A1(xi, yj; zp) = exp

[︁−𝒾f1(xi, yj; zp)
]︁

A2(xi, yj; zp) = exp
[︁
f2(xi, yj; zp)

]︁
f1(xi, yj; zp) = g1

(︁
h1(xi, yj; zp)

)︁
f2(xi, yj; zp) = ln

[︁
g2

(︁
h2(xi, yj; zp)

)︁ ]︁
h1(xi, yj; zp) = w1(xi, yj; zp)I(xi, yj; zp) + b1(xi, yj; zp)
h2(xi, yj; zp) = w2(xi, yj; zp)I(xi, yj; zp) + b2(xi, yj; zp)

(5)

Eq. 5 is first segmented into two intermediate exponential functions, A1(xm, yn; zp) and A2(xm, yn; zp),
exponent functions, f1(xm, yn; zp) and f2(xm, yn; zp), which track aperture phases and amplitudes
respectively. Defining A2/f2 in this manner, though seemingly redundant, is useful for maintaining
a mathematical symmetry between the phase and amplitude further on in the description. The
intensity dependency is introduced by two auxiliary functions, h1(xi, yj; zp) and h2(xi, yj; zp),
which are immediately transformed by two activation functions, g1 and g2. For our simulations,
we have the most robust results with ReLU (g1) and clipped ReLu (g2) activation functions:

g1(h1(xi, yj; zp)) =
{︄

0 h1(xi, yj; zp) ≤ 0
h1(xi, yj; zp) 0<h1(xi, yj; zp)

(6)

g2(h2(xi, yj; zp)) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 h2(xi, yj; zp) ≤ 0
h2(xi, yj; zp) 0<h2(xi, yj; zp) ≤ 1
1 1<h2(xi, yj; zp)

(7)

While there exist numerous choices of g1 and g2 , this construction avoids phase ambiguities
caused by negative values and the potential for field amplitudes to approach infinity. Additionally,
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the simple form of g1 and g2 also extends to their derivatives allowing for faster calculations.
The weights w1(xi, yj; zp) and w2(xi, yj; zp) and biases b1(xi, yj; zp) and b2(xi, yj; zp) are the terms
that we ultimately seek to optimize. As their name suggest, these parameters are analogous
to those used in ANN, with the key difference being that the weights are multiplied by real
valued intensities as opposed to the complex valued fields. This choice was made because many
of the most common and likely candidates for nonlinear materials such as inorganic/organic
photorefractives [26,27] and photochromic dyes [28] are driven primarily by optical absorption
phenomena. In the absence of any optical nonlinearity, the bias terms correspond to linear phase
delay and linear absorption/reflection.

The formulation relating the FOM to the parameters each layer, can now be expressed as an
adjoint aperture function ϵ(xi, yj; zp) defined as:

ϵ(xi, yj; zp) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂FOM(xi, yj; zp)
∂I(xi, yj; zp) p = 𝒫

2ℜ
[︂
∂A(xi,yj ;zp)
∂I(xi,yj ;zp) u(xi, yj; zp)û(xi, yj; zp)

]︂
p ≠ 𝒫

(8)

Here, I(xi, yj; zp) = |u(xi, yj; zp)|2, the layer’s field intensity. Denoted with a hat, û(xi, yj; zp) is
the backward-propagating adjoint field impinging upon the pth layer. The key step now arrives:
instead of performing the usual gradient descent, we define the backward-propagating adjoint
field as:

Û(xi, yj; zp) = A(xi, yj; zp)û(xi, yj; zp) + ϵ(xi, yj; zp)u(xi, yj; zp)∗ (9)

where Û(xi, yj; zp) is the adjoint field immediately after the aperture functions on the pth layer. It
can be thought of as virtual field arrangements passing into a FOM error mask such that it carries
information about the error backward to the plane of interest. The same Rayleigh-Sommerfeld
formalism is employed to to calculate adjoint fields as that used for the scalar electric fields. Note
that at the last layer û(xi, yj; z𝒫 ) = 0. Propagating backwards, we can now define the adjoint
fields using the adjoint Rayleigh-Sommerfeld equation:

û(xm, yn; zp−1) =
N∑︂
i

N∑︂
j

Û(xi, yj; zp)Hmnij(∆zp−1) (10)

The diffraction kernel Hmnij(∆zp−1), given in Eq. 1, remains unchanged despite the reversal
of propagation as a direct consequence of Helmholtz reciprocity. We obtain the sought out
gradient by combining the information from the forward propagation (electric field) with the
backward propagation (adjoint field). In this way, the previously mentioned costly point-by-point
aperture scan is avoided. The derivative of the FOM with respect to any of the mask parameters
(ϱ = {w1, w2, b1, b2}) at a given position is:

∆FOM(xi, yj; zp)
∆ϱ(xi, yj; zp) = 2ℜ

[︃
∂A(xi, yj; zp)
∂ϱ(xi, yj; zp)u(xi, yj; zp)û(xi, yj; zp)

]︃
(11)

We pause here briefly to highlight some interesting observations on the nature of adjoint fields.
As others have demonstrated [22,29], the adjoint field can be physically “simulated” using the
electromagnetic field and used to optimize transmission masks. It should be noted however,
that the physics of the adjoint field and and the electromagnetic field are identical only in the
linear case (i.e. ∂A /∂I = 0 and ϵ(xi, yj; zp) = 0). The reason lies in the response of fields to
boundary conditions, from which the Rayleigh-Sommerfeld equation was formulated to address.
In the linear instance, the adjoint field responds to linear boundary conditions imposed by
A(xi, yj; zp) (see Eq. 9) in the same way the scalar electric field does (see Eq. 1). However, when
A(xi, yj; zp) has a nonlinear component, an additional term incorporating ϵ(xi, yj; zp) and the
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complex conjugate of the scalar electric field must be included. Clearly, no such modification
is needed when propagating the scalar electric field. In summary, the physics of propagation
of the adjoint field and the scalar electric field are identical in free space (Eq. 1 and Eq. 10),
but the material response which appears in the boundary conditions is not necessarily the same.
Naturally these differences must be contained in the constitutive relations that govern both fields.

This has implications on real world attempts to perform all optical in-situ training. In principle
the adjoint field can be “simulated” using the scalar electric field so long as it has the same phase
and amplitude described in Eq. 1 is used. This synthetic adjoint field however, cannot propagate
through the nonlinear components of the network in the manner required for the “real” adjoint
field. In order to enforce the proper behavior additional measures are required to manage the
discrepancy. For example in [22,29] the synthetic adjoint field is allowed to propagate through
the linear components of the network only. When a nonlinear component is encountered, the
synthetic adjoint field is calculated electronically on a computer using data collected from both
the forward and backward propagation. The calculated synthetic adjoint field is then injected
from a external optical source backward into the next linear component. The need for these
awkward electronic calculations can be attributed to the direct transmission of the electromagnetic
field between layers. Ideally, we would like to avoid such cumbersome electronic operations or
replace them with passive optical analogues. In the next section we discuss (DNA)2 optically
addressable spatial light modulators, where the optical fields is not transmitted directly between
layers. As we will show, the formulation of the adjoint field is greatly simplified serving as a
possible alternative to published in situ methods.

3. (DNA)2 for optically addressable spatial light modulators (OASLM)

In OASLM systems [30–32], the incident field is not transmitted through the mask (see Fig. 1).
Instead, the incident field (“write beam”) is used to modulate the phase and/or amplitude of a
separate reference field (“read beam”) that is propagated forward to a desired position. In this
regime we use a modified form of the discretized Rayleigh-Sommerfeld diffraction equation:

u(xm, yn; zp+1) =
N∑︂
i

N∑︂
j

U(xi, yj; zp)Hmnij(∆zp)∆x∆y

U(xi, yj; zp) = A(xi, yj; zp)ur(xi, yj; zp)
(12)

Here, ur(xi, yj; zp) corresponds to a user controlled field that reads the hologram recorded by
the OASLM via the interaction of the input field and the nonlinear complex aperture function
A(xi, yj; zp). For simplicity, we have assumed this field to be a planewave at normal incidence
(i.e. ur(xi, yj; zp) = 1). We can use the adjoint Rayleigh-Sommerfeld formula given in Eq. 10
to calculate the adjoint fields as with the TAPLM case. In this scenario however, the adjoint
aperture function ϵ(xi, yj; zp) is defined as:

ϵ(xi, yj; zp) =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂FOM(xi, yj; zp)
∂Iq(xi, yj; zp) p = 𝒫

2ℜ
[︃
∂A(xi, yj; zp)
∂Iq(xi, yj; zp) û(xi, yj; zp)

]︃
p ≠ 𝒫

(13)

The backpropagating adjoint field immediately after the aperture function (i.e. side facing towards
the z1 plane) is defined as:

Û(xi, yj; zp) = ϵ(xi, yj; zp)u(xi, yj; zp)∗ (14)

Lastly, the derivative of the FOM with respect to any of the mask parameters at a given position
is:

∆FOM(xi, yj; zp)
∆ϱ(xi, yj; zp) = 2ℜ

[︃
∂A(xi, yj; zp)
∂ϱ(xi, yj; zp) û(xi, yj; zp)

]︃
(15)
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As discussed in the previous section, there is a possibility of in-situ training of optical neural
networks by using a synthetic adjoint field. When we compare the adjoint field in the OASLM
case (Eqs. 13–15) to the TAPLM case (Eqs. 8–11), a number of useful simplifications emerge. By
decoupling the scalar electric fields in the forward propagation between layers, we no longer need
to explicitly measure u(xi, yj; zp) to calculate any of the gradients. The complex conjugate of the
field is still technically needed to produce the adjoint field (Eq. 14). Even then, only the aperture
function ϵ(xi, yj; zp) need be calculated as the role of generating u(xi, yj; zp)∗ could potentially
be offloaded to a passive photorefractive phase conjugate mirror [33]. In this way OASLM
can provide a simpler and faster architecture for in-situ learning for systems that incorporate
nonlinearity.

4. (DNA)2 optimization of spacing between planes

The adjoint fields in either the TAPLM or OASLM geometries can also be used to optimize
the spacing between planes ∆zp as well. This adjoint field, like those mentioned previously,
backpropagates information about the error with respect to said spacing. This adjoint field when
propagating to a prior plane is defined as û∆z(xm, yn; zp−1) and is obtained using the following
formula:

û∆z(xm, yn; zp−1) =
N∑︂
i

N∑︂
j

Û(xi, yj; zp)
∂Hmnij(∆zp−1)
∂s(xm, yn; zp−1)∆x∆y

∆zp = Z(s(xm, yn; zp−1))
(16)

Here s(xm, yn; zp−1) is a spacing parameter that can be optimized with respect to a spacing function
Z and associated with each pixle in the plane p − 1. The spacing function is user defined and can
be sigmoidal so that all possible values of ∆zp will be bounded between two distances ∆zmin and
∆zmax. In this paper we define the spacing function using a clipped ReLU:

Z(s(xi, yj; zp)) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∆zmin s(xi, yj; zp) ≤ 0
∆zmin + (∆zmax − z∆min) s(xi, yj; zp) 0<s(xi, yj; zp) ≤ 1
∆zmax 1<s(xi, yj; zp)

(17)

The adjoint field Û(xi, yj; zp) used in the equation depends on the type of D2NN system and can
either be that defined in Eq. 9 for TAPLMs or in Eq. 14 for OASLMs. The gradient of the FOM
with respect to the spacing parameter is given by:

∆FOM(zp)
∆s(zp) =

1
N2

N∑︂
i

N∑︂
j

∆FOM(xi, yj; zp)
∆s(xi, yj; zp)

∆FOM(xi, yj; zp)
∆s(xi, yj; zp) = 2ℜ [︁

û∆z(xi, yj; zp)
]︁ (18)

Note that because the Rayleigh-Sommerfeld model assumes all pixels in a TAPLM/OASLM
element exist at the same value zp. As such we can only have a single value for the spacing
parameter defined here as s(zp) where s(xi, yj; zp) = s(zp). It is unlikely however, that each
individual pixel will have the same optimal value for s(zp). A more likely scenario is that the
gradient will have a spatial dependence owing to a non-uniform û∆z(xi, yj; zp). Thus the gradient
is instead defined as the spatial average which resolves the matter.

5. Adjoint aperture functions and various derivatives

As observed in the previous sections, the adjoint aperture functions ϵ(xi, yj; zp) exist for both the
TAPLM and OASLM regimes and are used to propagate information about the error backwards
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through the system. At the output plane ϵ(xi, yj; z𝒫 ) is given by the derivative of the figure of
merit FOM(xi, yj; z𝒫 ) with respect to the field intensity I(xi, yj; z𝒫 ). A list of aperture functions
associated with the various FOMs is given in Table 2. Note that in the case of PD we must
substitute u(xi, yj; z𝒫 )∗ → uint,q(xi, yj; z𝒫 )∗ in Eq. 9 and Eq. 14. We note here that as the FOM
becomes optimized with each iteration, the aperture function becomes more opaque resulting in
ever weaker adjoint fields. This is to be expected, as the adjoint fields are directly related to the
gradients (see Eqs. 11,14, and 18). In a perfectly optimized system ∆FOM /∆ϱ = 0 and thus for
all adjoint fields Û(xi, yj; z𝒫 ) = 0.

Table 2. Aperture Functions for Various Figures of Merit (FOM).

Name ϵ (xi, yj; z𝒫 )
Intensity Difference (ID) 2

(︂
|uq(xi, yj; z𝒫 ) |2 − |ūq(xi, yj; z𝒫 ) |2

)︂
Phase Difference∗(PD) 2

(︂
|uint,q(xi, yj; z𝒫 ) |2 − |ūq(xi, yj; z𝒫 ) |2

)︂
Gerchberg-Saxton (GS)

(︃
1 − |ūq(xi, yj; z𝒫 ) |

|uq(xi, yj; z𝒫 ) |

)︃

Categorical Cross Entropy (CCE)
𝒱∑︁
v′

tv′ (xi, yj; z𝒫 )σq,v′ (z𝒫 ) − tv(xi, yj; z𝒫 )

At the intermediate planes where the elements of the TAPLM/OASLM lay, ϵ(xi, yj; zp) is
related to the derivative of the complex aperture function A(xi, yj; zp) with respect to I(xi, yj; zp):

∂A
(︁
xi, yj; zp

)︁
∂I

(︁
xi, yj; zp

)︁ = 2∑︂
m=1

alwl
(︁
xi, yj; zp

)︁
A
(︁
xi, yj; zp

)︁ ∂gl
(︁
hm

(︁
xi, yj; zp

)︁ )︁
∂hl

(︁
xi, yj; zp

)︁
al =

{︄
−𝒾 l = 1
1 l = 2

(19)

For the activation functions g1(h1(xi, yj; zp)) and g2(h2(xi, yj; zp)) given previously, the derivatives
with respect to h1(xi, yj; zp) and h2(xi, yj; zp) are :

A(xi, yj; zp)
∂g1(h1(xi, yj; zp))
∂h1(xi, yj; zp) =

{︄
0 h1(xi, yj; zp) ≤ 0
A(xi, yj; zp) 0<h1(xi, yj; zp)

(20)

A(xi, yj; zp)
∂g2(h2(xi, yj; zp))
∂h2(xi, yj; zp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 h2(xi, yj; zp) ≤ 0
A1(xi, yj; zp) 0<h2(xi, yj; zp) ≤ 1
0 1<h2(xi, yj; zp)

(21)

In the TAPLM case, the complete absence of nonlinearity (i.e. w1(xi, yj; zp) = w2(xi, yj; zp) = 0)
results in a ϵ(xi, yj; zp) = 0 at the given intermediate position. The implication is that only the
linear component (the first term on the R.H.S. of Eq. 9) contributes to the gradient. In the
OASLM case, there is no such linear term meaning that the gradient is necessarily zero. For this
reason we cannot backpropagate any information about the error in the absence of nonlinearity
beyond the last mask layer. As one would expect, having a system of purely linear OASLMs (i.e.
just SLMs) with more than one layer is of no benefit.

The gradients with respect to the weight and bias parameters that we seek to calculate (Eq. 11
and Eq. 15) contain derivatives defined as:

∂A(xi, yj; zp)
∂wl(xi, yj; zp) = alI(xi, yj; zp)A(xi, yj; zp)

∂gl(hl(xi, yj; zp))
∂hl(xi, yj; zp) (22)

∂A(xi, yj; zp)
∂bl(xi, yj; zp) = alA(xi, yj; zp)

∂gl(hl(xi, yj; zp))
∂hl(xi, yj; zp) (23)
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The gradient equation for the spacing parameter Eq. 18 contains a derivative defined as:

∂Hmnij(∆zp)
∂s(xi, yj; zp) =

∂Hmnij(∆zp)
∂∆zp

∂∆zp

∂s(zp) (24)

Having previously defined ∆zp using the spacing function Z(s(zp)) given by Eq. 17 we can then
define ∂∆zp /∂s as:

∂Z(s(zp))
∂s(zp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 s(zp) ≤ 0
∆zmax − ∆zmin 0<s(zp) ≤ 1
0 1<s(zp)

(25)

Here we do not give an explicit definition of ∂Hmnij
/︁
∂∆zp , though it can be easily obtained,

because we used an FFT accelerated Angular-Spectrum method or FFT-AS [34] to solve both the
Rayleigh-Sommerfeld and adjoint Rayleigh-Sommerfeld equations. In the frequency domain,
Hmnij(∆zp) is represented by a plane wave spectrum e𝒾kz∆zp . Therefore, the derivative with respect
to ∆zp is readily calculated in the frequency domain using 𝒾kze𝒾kz∆zp in place of e𝒾kz∆zp for FFT-AS
based approaches.

6. Example simulations and comparisons

In this section we demonstrate the (DNA)2 technique for designing TAPLM and OASLM based
D2NN, by applying them to the classifier problem for handwritten digits. Image data was drawn
from the MNIST database [35] and the the physical parameters of the D2NN were taken from the
supplemental material of [5]. Simulations for TAPLM and OASLM were done optimizing both
linear and nonlinear phase and amplitude parameters as well as the spacing between planes (see
Fig. 2). All simulation parameters described in this section are given in Table 3.

Table 3. Summary of the Parameters Used in Our
Simulations.

Simulation Parameter Description Symbol Value

Resolution of x ∆x 400 µm

Resolution of y ∆y 400 µm

Simulation Window M × M 800 x 800

Mask/SLM Window N × N 400 x 400

Min Distance Between Planes ∆zmin 1 cm

Max Distance Between Planes ∆zmax 30 cm

Wavelength of Light λ 749 µm

Number of Layers 𝒫 4

Optimization Parameter Description Value
Mini-batch Size 20

Training Set Size 50000

Validation Set Size 4000

Testing Set Size 8800

Batch Size 1000

Iterations 100

Epochs 75

Learning Rate 1*10-3

ADAM Decay Rate .9
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Fig. 2. Example diffractive deep neural networks (D2NN) and results obtained using
(DNA)2. a) A TAPLM2 based D2NN numerical digit classifier comprised of 3 layers
of nonlinear phase/amplitude activation functions. b) The weight and bias coefficients
associated with the activation functions of each layer are trained via the (DNA)2

algorithm using input data taken from the MNIST database. The algorithm optimizes
the coefficients to perform classification between the input and output planes of the
network. c) After this training phase, the D2NN design is tested against a set of never
before seen data. Note that in our study only the amplitude

��𝑢𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧1)
�� of the input

field is modulated and normalized to a maximum value of unity. The phase profile(
∠𝑢𝑞 (𝑥𝑖 , 𝑦 𝑗 ; 𝑧1)

)
is kept flat at 0. The maximum intensity of the output field has also

been normalized to unity in the figure. As is typical for each D2NN, the CCE FOM
allows some energy to impinge all target regions in the output plane. However, the
correct target region is consistently and visibly more intense than all others allowing
for a 95.82% accuracy.

The method used to perform forward and backward propagation is a variant of the FFT-AS
method described in [34]. This method zero-pads the simulation window to 𝑀 ×𝑀 and apodizes
the plane wave spectrum in the frequency domain to suppress aliasing. The simulation window
used was 800 x 800. The region around the 400 x 400 containing TAPLM/OASLM in the
simulations were assumed to be opaque apertures where any incident light was fully absorbed. All

Fig. 2. Example diffractive deep neural networks (D2NN) and results obtained using
(DNA)2. a) A TAPLM2 based D2NN numerical digit classifier comprised of 3 layers
of nonlinear phase/amplitude activation functions. b) The weight and bias coefficients
associated with the activation functions of each layer are trained via the (DNA)2 algorithm
using input data taken from the MNIST database. The algorithm optimizes the coefficients
to perform classification between the input and output planes of the network. c) After this
training phase, the D2NN design is tested against a set of never before seen data. Note that in
our study only the amplitude

|︁|︁uq(xi, yj; z1)
|︁|︁ of the input field is modulated and normalized to

a maximum value of unity. The phase profile
(︁
∠uq(xi, yj; z1)

)︁
is kept flat at 0. The maximum

intensity of the output field has also been normalized to unity in the figure. As is typical for
each D2NN, the CCE FOM allows some energy to impinge all target regions in the output
plane. However, the correct target region is consistently and visibly more intense than all
others allowing for a 95.82% accuracy.

Additionally, simulations for a purely linear phase mask TAPLM system were done for
comparison. In the purely linear TAPLM case, referred to as TAPLM1, only the linear phase
parameters b1(xi, yj; zp) are optimized. The linear amplitude parameters of each layer are set to
unity (b2(xi, yj; zp) = 1) to allow for full transmission of the field, while the nonlinear phase and
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amplitude parameters are set to zero (w1(xi, yj; zp) = w2(xi, yj; zp) = 0). In the transmission mask
simulations referred to as TAPLM2, all parameters on each mask are optimized. The simulation
parameters of the OASLM are likewise optimized. In all three cases, all parameters including
those related to spacing were randomly initialized. The spacing between planes was constrained
to a minimum value ∆zmin set to 1 cm and a maximum value ∆zmax set to 30 cm. Pixel resolutions
for ∆x and ∆y were set to 400µm with the number of pixels (NxN) in the input images up-sampled
to 400 x 400 pixels. The resulting images were normalized so that the maximum pixel value is
always unity and the minimum zero. The amplitude of the input fields

(︁|︁|︁uq(xi, yj; z1)
|︁|︁)︁ are set

equal to the input image, while the phase of the field
(︁
∠uq(xi, yj; z1)

)︁
is set to 0 everywhere. The

total number of images in the training set, validation set, and testing set were 50000, 4000, and
8800 respectively. These numbers were chosen to maximize the MNIST data used while also
ensuring that each of the 10 digit categories (0-9) contribute an equal number of images to the
total in each set. The target regions are 21.3 µm x 21.3 µm squares assigned to each digit as
shown in Fig. 2.

The method used to perform forward and backward propagation is a variant of the FFT-AS
method described in [34]. This method zero-pads the simulation window to M × M and apodizes
the plane wave spectrum in the frequency domain to suppress aliasing. The simulation window
used was 800 x 800. The region around the 400 x 400 containing TAPLM/OASLM in the
simulations were assumed to be opaque apertures where any incident light was fully absorbed. All
parameters were optimized using a combination of mini-batch gradient decent and the Adaptive
Moment Estimation (ADAM [36]) algorithms. The training set was subdivided into five batches
of 1000 randomly selected images (100 from each category). A smaller mini-batch (Q = 20) is
randomly selected from the larger batch and a forward and backward simulation is performed
and used to calculate the gradients. For both the TAPLM and OASLM cases, categorical cross
entropy was used to calculate the loss. The gradients are averaged over the mini-batch and fed
into the ADAM algorithm where it is used to update the simulation parameters. The learning
rates and decay rates used in the ADAM algorithm for the momentum and velocity were 10-3

and .9 respectively for all parameters. This process is repeated for 100 iterations for each batch
with the the loss and accuracy of the D2NN system calculated against the 4000 images in the
validation set (Q = 4000). Accuracy is determined by taking the ratio of correct predictions
over total predictions for a given dataset (Q). In our simulations, the predicted digit value (ν)
for a given input field (q) is determined by which target region has the highest optical power
(i.e. max

v
Pq,v (z𝒫 )).

The validation set calculation defines the end of 1 epoch. A new batch of training data is
generated and the aforementioned optimization process begins again. For our simulations the
optimization process consisted of 75 epochs with the final D2NN system selected from the
epoch with the highest accuracy value when measured against the validation set. At the end of
optimization the loss and accuracy of each D2NN system is calculated against the 8800 images
in the testing set (Q = 8800). The code used in our simulation was written in Python and
implemented on a AMD Ryzen 9 3900x 12 core CPU system with 64 GB of RAM and a NVidia
RTX-2070 Super GPU with 8 GB of RAM. Simulation code was written in house using CuPy
[37] to perform forward and backward simulations on the GPU.

The evolution of the loss and accuracy against the validation set verses the simulation epochs
of the TAPLM1, TAPLM2, OASLM are shown in Fig. 3. Included as well as are the total training
and validation time of each scenario. All three of the simulations converged quickly to a solution
with the loss and accuracy being roughly inversely proportional. The parameters that yielded the
best accuracy results were selected for the final testing phase. The best accuracy values were
94.2% for TAPLM1, 95.7% for TAPLM2, and 95.1% for OASLM. The TAPLM1 case required
the least amount of time (129 minutes) as it only required optimizing the 3 spacing parameters
and linear phase components (3 layer’s bias components). The TAPLM2 (192 minutes) and
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OASLM (187 minutes) simulations, on the other hand, needed to optimize 3 spacing parameters
and 12 weight and bias components of all the layers. Even with a roughly 4-fold increase in
the number of parameters being optimized, the increase in simulation times for both TAPLM2
and OASLM were no more than 1.5 times that of the TAPLM1 case. This modest increase in
simulation time despite the significant increase in design parameters highlights the main benefit
of the adjoint methods. Another benefit that contributes to efficiency are the natural recursions
present in the (DNA)2 algorithm, a feature common to most adjoint methods. Many terms such
as the complex aperture functions and intensities are used in both the forward and backward
propagation routines and thus only need to be calculated once. Additionally, terms that are unique
to the backward calculations such as ∂A /∂ϱ and ∂A /∂I are relatively fast to calculate due to the
simple form of the activation functions g1 and g2. As a final note, the OASLM were observed to
slightly out perform the TAPLM2 in terms of simulation time which we attribute to the simpler
nature of the OASLM calculations. As mentioned previously, when comparing the equations for
the adjoint fields (Eq. 9 vs Eq. 14) and the gradients (Eq. 11 and Eq. 15), the OASLMs require
fewer operations and thus should take less time.

Fig. 3. a) The categorical cross entropy loss (CCE) vs epochs and b) accuracy vs
epochs for the TAPLM1, TAPLM2, and OASLM over the 4000 image validation set.
Of the three, the TAPLM1 simulation required the least amount of time (129 minutes),
followed by the OASLM (187 minutes), and TAPLM2 (192 minutes). On the other
hand, the greatest accuracy is observed in the TAPLM2 (95.7%), followed by the
OASLM (95.1%) and TAPLM1 (94.2%)

After optimization, the D2NN systems were evaluated against the testing set resulting in
accuracy values of 94.64% for TAPLM1, 95.82% for TAPLM2, and 94.85% for OASLM. Fig.c.2
shows a sample result from an TAPLM2 optimized system that correctly predicted the value
of the input and is typical of what was observed in all the D2NN simulations. Although all
target regions are illuminated, we can clearly see that the brightest region corresponds to the
intended target region. The confusion matrices for each simulation, shown in Fig.4, indicates
that the accuracy of each D2NN system are generally high across all numbers. The TAPLM1 and
OASLM cases do struggle to classify certain digits such as 8 though both maintained accuracies
above 88.98% and 88.64% respectively. Overall, the performance of each case were found to be
very close with the nonlinear systems having a slight edge in terms of accuracy when classifying
each number. This was especially clear in the TAPLM2 case with accuracy never falling below
92.73% for any digit. This of course, comes at the expense of an increased optimization time. It
is possible, that these differences may decline with either an increase in the number of epochs,
layers, and/or pixels.

Fig. 3. a) The categorical cross entropy loss (CCE) vs epochs and b) accuracy vs epochs
for the TAPLM1, TAPLM2, and OASLM over the 4000 image validation set. Of the three,
the TAPLM1 simulation required the least amount of time (129 minutes), followed by
the OASLM (187 minutes), and TAPLM2 (192 minutes). On the other hand, the greatest
accuracy is observed in the TAPLM2 (95.7%), followed by the OASLM (95.1%) and
TAPLM1 (94.2%).

After optimization, the D2NN systems were evaluated against the testing set resulting in
accuracy values of 94.64% for TAPLM1, 95.82% for TAPLM2, and 94.85% for OASLM. Fig. 2(c)
shows a sample result from an TAPLM2 optimized system that correctly predicted the value
of the input and is typical of what was observed in all the D2NN simulations. Although all
target regions are illuminated, we can clearly see that the brightest region corresponds to the
intended target region. The confusion matrices for each simulation, shown in Fig. 4, indicates
that the accuracy of each D2NN system are generally high across all numbers. The TAPLM1 and
OASLM cases do struggle to classify certain digits such as 8 though both maintained accuracies
above 88.98% and 88.64% respectively. Overall, the performance of each case were found to be
very close with the nonlinear systems having a slight edge in terms of accuracy when classifying
each number. This was especially clear in the TAPLM2 case with accuracy never falling below
92.73% for any digit. This of course comes at the expense of an increased optimization time. It
is possible that these differences may decline with either an increase in the number of epochs,
layers, and/or pixels.
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Fig. 4. Confusion matrix representing D2NN classification performance for the 8800
MNIST handwritten digit test set with overall averages for a) TAPLM1, b) TAPLM2,
and b) OASLM. The overall accuracy for each system is shown at the top of each figure.
They are 94.64% for the TAPLM1 case, 95.82% for the TAPLM2 case, and 94.85% for
the OASLM case.

7. Conclusion

We have demonstrated significant improvements to both the generalization and computational
efficiency of D2NN inverse design algorithms by simulating a fully optimizable nonlinear
complex-valued diffractive deep neural network utilizing the (DNA)2 optimization routine. The
technique was used to develop a D2NN-based digit classifier using linear transmission phase
masks (TAPLM1), fully nonlinear amplitude/phase modulating transmission masks (TAPLM2),
and fully nonlinear amplitude/phase modulating optically addressable spatial light modulators
(OASLM) architectures. Using data taken from the MNIST database, weight and bias parameters
associated the linear/nonlinear amplitude/phase response of each element as well as the spacing
between planes were optimized for each of the aforementioned D2NN systems. After 192 minutes
or less of training and validation, each system was able to categorize a test set of 8800 never
before seen test digits, with an accuracy of 94.64% (TAPLM1), 95.82% (TAPLM2), and 94.85%

Fig. 4. Confusion matrix representing D2NN classification performance for the 8800
MNIST handwritten digit test set with overall averages for a) TAPLM1, b) TAPLM2, and b)
OASLM. The overall accuracy for each system is shown at the top of each figure. They are
94.64% for the TAPLM1 case, 95.82% for the TAPLM2 case, and 94.85% for the OASLM
case.

7. Conclusion

We have demonstrated significant improvements to both the generalization and computational
efficiency of D2NN inverse design algorithms by simulating a fully optimizable nonlinear
complex-valued diffractive deep neural network utilizing the (DNA)2 optimization routine. The
technique was used to develop a D2NN-based digit classifier using linear transmission phase
masks (TAPLM1), fully nonlinear amplitude/phase modulating transmission masks (TAPLM2),
and fully nonlinear amplitude/phase modulating optically addressable spatial light modulators
(OASLM) architectures. Using data taken from the MNIST database, weight and bias parameters
associated the linear/nonlinear amplitude/phase response of each element as well as the spacing
between planes were optimized for each of the aforementioned D2NN systems. After 192 minutes
or less of training and validation, each system was able to categorize a test set of 8800 never
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before seen test digits, with an accuracy of 94.64% (TAPLM1), 95.82% (TAPLM2), and 94.85%
(OASLM). While all systems were able to achieve a minimum 94% level of accuracy, the linear
TAPLM1 D2NN architecture which was fastest to train (129 minutes) was the least able to
classify certain digits with accuracy falling to as low as 88.98%. This pattern was followed by
the OASLM (187 mins) which also struggled with certain digits with the lowest accuracy being
88.64%. The nonlinear cases TAPLM2 (192 min) taking the longest to train, performed the best
with the accuracy never falling below 92.73% for any digit. We note however, that the average
accuracy values are still very close (roughly 95%) and may be improved with increases in the
number of pixels/layers and training epochs.

We anticipate that the adoption of (DNA)2 in the space of diffractive optics and holography
will facilitate design of more advanced systems. Such systems may require balancing the needs of
multiple wavelengths using dispersion engineered materials (meta-atoms) or multiple objectives
imposed by an imaging system. In these instances, the (DNA)2 algorithm stands as an efficient
alternative to the standard approach that could significantly accelerate inverse design process
for gradient based approaches. Beyond the diffractive optics, (DNA)2 may also find use as a
flexible phase/amplitude retrieval algorithm in coherent optical imaging systems. Being based
on the Rayleigh-Sommerfeld algorithm, our approach is able to operate seamlessly in nearfield
or farfield conditions.
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