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Abstract: The modern-day resurgence of machine learning has encouraged researchers to revisit
older problem spaces from a new perspective. One promising avenue has been implementing
deep neural networks to aid in the simulation of physical systems. In the field of optics, densely
connected neural networks able to mimic wave propagation have recently been constructed. These
diffractive deep neural networks (D2NN) not only offer new insights into wave propagation, but
provide a novel tool for investigating and discovering multi-functional diffractive elements. In this
paper, we derive an efficient GPU-friendly D2NN methodology based on Rayleigh-Sommerfeld
diffraction. We then use the implementation to virtually forge cascades of optical phase masks
subject to different beam steering conditions. The input and output conditions we use to train each
D2NN instance is based on commercial electro-optic modulated waveguide systems to encourage
experimental follow-on. In total, we analyze the beam steering efficacy of 27 individual D2NN
instances which explore different permutations of input sources, mask cascades, and output
steering targets.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The core of all machine learning (ML) techniques rely on the algorithmic parsing of data in order
to uncover abstracted patterns. From the emergent models, future determinations or predictions
can be evaluated, often with a surprising degree of both accuracy and generality. Under the
umbrella of ML, many successful modalities have been developed over the years ranging from
rule-based approaches [1,2], nonlinear regression methods [3], natural language processing
algorithms [4,5], and knowledge-based representations [6,7], to agent-based computing [8,9]
and perception systems based on ambient intelligence [10]. The recent resurgence in ML
techniques can be attributed to modern advancements in large data collection infrastructures,
cloud computing, and the serendipitous applicability of GPUs for massively parallel computation
[11–13]. One of the fastest growing approaches has been deep learning [14]. Simply put, deep
learning is a process of parameter fitting accomplished by nesting statistical function calls on raw
data. If one repeatedly composes these transformations on initial data while constraining to a
desired output (i.e. supervising), a multi-layered abstract representation correlating raw data
to prescribed outputs can be obtained. Amazingly with deep learning, the resulting high-level
data representation is automatically retrieved in the sense that the optimal transformations can be
uncovered without requiring specific domain expertise. This fact is illustrated particularly well in
a deep net auto-encoder [15–17] where image compression schemes can be uncovered without
prior knowledge to the inner workings of standard image compression algorithms. The success
of deep learning indubitably stems from this profound ability to abstract data, and has since
demonstrated impressive results in the fields of image recognition [12,18], speech recognition
[5,19], self-driving vehicles [20,21], and consumer tailored advertising [22,23]. The ramifications
of deep learning are so ubiquitous that it is now virtually present in everyday modern life through
computers, cameras, smartphones, and the Internet of Things [24]. By virtue of the scientific
community, the workflow of designing a deep neural network is now streamlined. Open source
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programs such as TensorFlow [25] and pyTorch [26], equip the researcher with a toolkit for
seamlessly setting up deep network topologies while ensuring the most efficient methods for
training.

The abstract data representations accreted by deep neural network training suggests harness-
ing them for physics based simulations. One can imagine implementing this functionality in two
possible ways; the first is to procure a database of simulation results and train a network capable
of guiding follow-up computations. An example of this can be found in studies requiring density
functional theory. The numerical computations involved are expensive and time-consuming; the
ability to pre-screen material classes of interest with deep neural networks greatly increases the
chance of identifying an optimal material composition [27]. In a similar vein, the configuration
space of possible optical metasurface compositions and structures can be effectively navigated
through neural network advisory [28,29]. The second way is to teach amachine learning algorithm
to mimic or aid the computational method itself. A prime example is in the study of partial
differential equations which often describe the dynamics of physical processes. Convolutional
neural networks, for instance, offer a means to aid in their numerical computation [30,31]. Such
an ability has given a fresh perspective in studying famously intractable problem spaces such
as fluid dynamics [32–34]. The first suggestion and experimentation for exploiting the field of
optics to mimic neural network behavior worked with a system of light emitters/detectors and
holograms to act as the nodes and edges of the network respectively [35–38]. This approach had
the specific perspective of using light-matter interactions to “perform the computation” that a
dense neural network on a computer would produce.

More recently, this perspective has been flipped. Due to an intriguing isomorphism between
the Huygens-Fresnel Principle and the architecture of a dense neural network, the modern
computational capabilities of deep neural networks can instead be harnessed to mimic wave
propagation [39,40]. This so-called diffractive deep neural network (D2NN) not only offers new
insights into materials design but gives a novel tool for investigating multi-functional diffractive
elements. In this paper, we derive an efficient D2NN methodology and use it to design cascades
of optical phase masks in order to perform multi-directional beam steering. The input and output
training data is derived from a commercially based end-firing waveguide system to encourage
experimental realization. We investigate in detail the effects of permuting multiple illumination
sources, multiple cascaded phase masks, and multiple target output intensities. Our investigation
provides a general protocol to follow when subjecting phase-based devices to multiple wave
propagation constraints.

2. Methodology

2.1. Rayleigh-Sommerfeld diffraction through a cascade of phase masks

The Huygens-Fresnel principle is an analysis method for wave propagation valid for both the
near and far field. The principle states that all spatial points on an existing primary wavefront
can be treated as sources of secondary spherical radiators. The total superposition of these
secondary wavelets properly determines the evolved wavefront at subsequent planes. This
physical description can be isomorphic to a densely connected neural network under proper
constraints. The transverse spatial discretization of the complex electric field, the phase evolution
of the secondary spherical wavelets, the direction of propagation, the nonlinear effects and free
EM sources, directly correspond to the number of neurons in a layer, connecting weights, number
of layers in the network, activation functions, and bias values respectively (Fig. 1).

Mathematically, the wave propagation illustrated in Fig. 1(a) can be described by the
Rayleigh-Sommerfeld diffraction integral [38]. The discrete form of this integral is commonly



Research Article Vol. 28, No. 18 / 31 August 2020 / Optics Express 25917

Fig. 1. The isomorphism between the Huygens-Fresnel principle and a densely connected
neural network. (a) Every discrete point in an initial transverse plane acts as secondary
spherical resonators. The evolution of the electric field at each point in a further plane is
determined by the superposition of these contributions. (b) Every discrete amplitude in an
initial transverse plane represents a neuron in a layer. The evolution of the electric field
along with its initial phase value determines the weights which connect to a further layer.
The neurons in this further layer are determined by the summation of these contributions.
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used for its numerical computation:

U(xm, yn; zp+1) =

N∑
i

N∑
j

Hmnij(∆zp)U(xi, yj; zp)∆x∆y

=
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) (
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rmnij

) (
1

rmnij
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)
U(xi, yj; zp)∆x∆y

(1)

where U(xi, yj; zp) = u(xi, yj; zp) exp{−ı̂φ(xi, yj; zp)} is the total electric field located at a general
propagation distance, zp. For the purposes in this manuscript, we choose to describe this
total field by a complex-valued field, u(xi, yj; zp), and a separated contribution from a thin
phase-only mask element placed at zp, exp{−ı̂φ(xi, yj; zp)}. The total field is discretized in
both transverse coordinates, {xi, yj}, by N points with resolution, {∆x,∆y}, and are tracked
with object plane indices, {i, j}. The resolution, defined as ∆x = ∆xi = xi+1 − xi and ∆y =
∆yj = yj+1 − yj, are constant in a given plane. Identical to the aforementioned situation,
U(xm, yn; zp+1) = u(xm, yn; zp+1) exp{−ı̂φ(xm, yn; zp+1)} is the total electric field located at a further
propagation distance, zp+1, subject to another phase mask, exp{−ı̂φ(xm, yn; zp+1)}, discretized
in both transverse coordinates, {xm, yn}, by N points tracked by image plane indices {m, n}.
These two electric fields are connected by a transfer function, Hmnij(∆zp), which encodes the
spherical phase accumulation of each secondary resonator during propagation. The transfer
function is dependent on the radial distance between points in the zp and the zp+1 planes and is

given by rmnij =
√
(xi − xm)2 + (yj − yn)2 + ∆z2p where ∆zp = zp+1 − zp. Finally, k = 2πn/λ is the

wavenumber with wavelength, λ, refractive index of the medium, n, and ı̂ =
√
−1 (script ‘ı̂’ is

used to avoid conflict with the iterator ‘i’). When wanting to propagate further from the zp+1 to
the zp+2 plane, the object and image plane indices can simply be re-assigned to the former and
latter respectively.

2.2. D2NN forward propagation isomorphism

If we reform Eq. (1) in a contrived way, we are able to draw a direct analogy between the
Rayleigh-Sommerfeld description of diffraction and the mathematics of a dense neural network
(Fig. 1(b)):

u(xm, yn; zp+1) = f

(
N∑
i

N∑
j

wmnij(∆zp)u(xi, yj; zp) + bij(zp)

)
wmnij(∆zp) = e−ı̂φ(xi,yj ;zp) ×

(
eı̂krmnij
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) (
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rmnij

) (
1

rmnij
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)
∆x∆y.

(2)

When flattened, the two-dimensional complex-valued field without the phase mask contribution,
u(xi, yj; zp), represents the nodes in the pth layer of a dense neural network while the weight factor,
wmnij(∆zp), represents the edge values which connect nodes between layers p and p + 1. Note
that the weight factor, as defined, accounts for the phase mask contribution at zp, the transverse
coordinate discretization, and the Rayleigh-Sommerfeld diffraction kernel. A bias term, bij(zp),
is added to the weighted sums and then wrapped in the activation function, f . In the propagation
picture, the bias term represents contributions to the field from current sources and the activation
function can accompany nonlinear effects. For our purposes, we assume no current sources,
bij(zp) = 0 and a linear activation function, f = x. Computing Eq. (2) results in the complex
electric field, u(xm, yn; zp+1), at the further propagation distance, zp+1. The new two-dimensional
complex amplitude is flattened and stored as the node values at the p + 1 layer. This process is
then iterated until the final image plane is obtained. Note that unlike standard neural networks, the
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nodes and weight factors are complex numbers which cannot be arbitrarily adjusted. Instead, they
contain physical meaning defined by contributions from the Rayleigh-Sommerfeld diffraction
kernel, the phase mask element located at zp, and the physical spacing of the discrete sampling.
For this reason, the adjustment of weights during training must be done in accordance with the
physics and can be interpreted as changes in wavelength, refractive index, ∆z, or phase mask
pixel heights depending on which of these are locked constant in the program.

There are several ways to solve Eq. (2) including direct evaluation. However, a number
of Fast Fourier Transform (FFT) based approaches have been developed that are accurate, less
resource intensive, and most importantly faster than a direct approach. These FFT methods fall
into two main categories: the angular spectrum methods (FFT-AS) [38,41,42] and the direct
integration (FFT-DI) [41,42] methods. The latter is the approach implemented in this manuscript,
and takes advantage of the fact that for sufficiently large problems, convolution is more efficiently
and easily done in the frequency domain. The incompatibility between the cyclic convolution
performed by FFT-DI and the linear convolution of Rayleigh-Sommerfeld kernel is resolved by
zero-padding the boundaries of the input field, u(xi, yj; zp) [41]. We note that although FFT-DI
is used in this publication, any approach such as FFT-AS that solves the Rayleigh-Sommerfeld
diffraction integral is also suitable for use.

2.3. D2NN backpropagation isomorphism

Equipped with the D2NN forward propagation method of section 2.2, one can now compute the
evolution of an electric field through a series of planes each subject to a thin phase mask element
in a format compatible with deep learning. The next essential step is to provide an iterative
procedure which constrains an input field to a desired output intensity. This constraint will lead
to an iterative adjustment of the layer weights; if the wavelength, refractive index, and spacing
parameters are held constant, changes in the layer weights can be correlated to adjustments in the
pixel-by-pixel values of the phase masks at each layer. In this way, the phase delays imposed
by the phase masks can be optimized. In general, this procedure is able to accompany multiple
inputs fields connected to multiple output target intensities. Each input and target output pair
become the training data set fed into the D2NN.

The iterative procedure to be defined in our context is known as backpropagation. Succinctly
put, backpropagation is an algorithmic process which computes the multi-dimensional gradient
of a neural network loss function with respect to the layer weights. In the case of D2NN, dictated
by Eq. (2), the gradients are evaluated with respect to the phases introduced by the masks at each
layer. We define a training set of size Q where each q ∈ Q contains an input field, uq(xi, yj; z1),
and a corresponding target output intensity, Īq(xi, yj; zP). This notation is meant to elucidate that
the input field is set at an initial z1 = 0 plane and is computed through a finite amount of layers,
{z1, z2, z3, . . . , zP}, with the final field occurring at zp = zP . Thus, the input field in conjunction
with Eq. (2) is used to obtain the actual output intensity at zP , Iq(xi, yj; zP) = |uq(xi, yj; zP)|

2.
For each data pair in Q, this actual output intensity will differ from the supervised target output
intensity. The pixel-by-pixel error is given by:

εqij = Iq(xi, yj; zP) − Īq(xi, yj; zP). (3)

The neural network loss function to be minimized can then be defined as the mean squared error
(MSE) of these pixel-by-pixel errors summed over each of the training data pairs:

MSE =
1

QN2

Q∑
q

N∑
i

N∑
j
ε2qij. (4)

We seek phase mask functions at each plane prior to the output plane which minimize Eq. (4):

{φ(xi, yj; z1), φ(xi, yj; z2), . . . , φ(xi, yj; zP−1)} = arg min(MSE). (5)
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Because of the formalism in use, these phase mask values can be obtained via gradient descent
as outlined in Ref [39]. The derivative of each and every phase mask pixel can be derived with
respect to the MSE:

dMSE
dφ(xs, yt; zv)

=
4

QN2

Q∑
q

N∑
i

N∑
j
εqij<

(
u∗q(xi, yj; zP)

duq(xi, yj; zP)

dφ(xs, yt; zv)

)
. (6)

Where the dummy subscripts, (s, t, v), are able to mirror any of the values of the subscripts
(i, j, p) can. All terms in Eq. (6), except duq(xi, yj; zP)/dφ(xs, yt; zv), are computed and stored
during the forward propagation algorithm. The remaining unknown term, the derivative of the
computed output field with respect to any particular phase mask pixel, can be readily obtained
by modifying the weights in the forward propagation algorithm with an appropriate aperture
function, astij(zv, zp):

ũ(xm, yn; zp+1) = f̃

(
N∑
i

N∑
j

w̃mnij(∆zp )̃u(xi, yj; zp) + b̃ij(zp)

)
w̃mnij(∆zp) = astij(zv, zp)wmnij(∆zp)

astij(zv, zp) =


−j xi = xs, yj = yt, zp = zv

0 xi , xs, yj , yt, zp = zv

1 zp , zv

.

(7)

Again we assume that the medium is source free, b̃ij(zp) = 0, and undergoes linear propagation,
f̃ = x. This aperture function incorporates effect of differentiating the Rayleigh-Sommerfeld
with respect to the parameter φ(xs, yt; zv) as discussed in the supplemental material of Ref. [39].
Using the modified weight function, Eq. (7) can be used to calculate the derivatives of the field
where ũ(xm, yn; zP) = duq(xi, yj; zP)/dφ(xs, yt; zv) and thus calculate the gradient for all phase
parameters in any plane. Because we have maintained the same formalism as Eq. (2), Eq. (7)
can also be solved using FFT based techniques (specifically FFT-DI). The difference is that now
in order to calculate the gradients, a large number of FFT-DI calculations must be performed;
that is, one must adjust the aperture function based on the each phase parameter φ(xs, yt; zv)

and re-compute. However, it should be noted that the derivative calculations are independent
from one another and can be performed in parallel. To maximize speed, all calculations of the
gradients were performed in parallel using Nvidia RTX-2080Ti GPUs.

3. Problem setup for multi-directional beam steering

3.1. Input source model

The procedures described in the section 2 create a cascade of phase-masks such that an arbitrary
number of input and output intensity patterns can be connected after propagation. Using a
similar protocol, D2NNs were first demonstrated in the context of digit classification [39,43].
The networks essentially categorized input electric fields with intensity patterns resembling
handwritten digits. Each input field was supervised to an output intensity bin representing the
digits 0-9. Since the output field intensity for each number was assigned a unique non-overlapping
region of space, the output field intensity could be used to interpret the input with use of detectors.
Such an approach needs to be modified to work in the contexts of beam steering. To do so, we
must prudently provide training data in the form of input fields with corresponding steering
output intensity states. Additionally, we must stage an experimental scenario where switching
between different input fields can be optically fast.
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We propose the use of an end-firing waveguide optical phased array [44] shown in Fig. 2 which
allows for nanosecond time scale switching. The device is a one-dimensional array of waveguides
where each component can be electro-optically modulated (EOM) on an integrated platform.
Each port is approximated as a point source with equal amplitude at a plane located at z0 with a
phase delay of φq(χ` ,ψ` ; z0) corresponding to the `th port at location {χ` ,ψ`}. In this way, the
output from the array can be modeled using using the Rayleigh-Sommerfeld approach introduced
in Eq. (1) where the phase delay of each port is analogous to a pixel on an adjustable phase mask.
The accuracy of treating each port like a point source is contingent on the distance ∆z1 and the
width of the port wport being such that the fresnel number NF = w2

port/λ∆z1 is significantly less
than unity (i.e. in the far field) and the Rayleigh resolution limit rlimit = 1.22λ∆z1/N∆x is slightly
below waveguide port size (i.e. rlimit / wport) [38]. If such a condition is met, the electric field at
the end of the EOM ports uq(xi, yj; z0) is given by the formula:

uq(xi, yj; z0) = Aq

N∑̀̀
δ
χ` ,ψ`
xi,yj

wq,mnij(∆zp) = e−ı̂φq(xi,yj ;zp) ×

(
eı̂krmnij

2πrmnij

) (
∆zp

rmnij

) (
1

rmnij
− ı̂k

)
∆x∆y

δ
χ` ,ψ`
xi,yj =

{
1 xi = χ` , yj = ψ`

0 otherwise

(8)

where Aα is a normalization factor to be determined, N` is the total number of ports, and
wq,mnij(∆zp) is weight factor for the qth target. The weight factor wq,mnij(∆zp) is used in place of
wmnij(∆zp) in Eq. (2) to calculate the field uq(xm, yn; z1).

Fig. 2. Basic scheme of end-firing waveguide electro-optic modulated phased array. Under
the correct conditions, each individual port acts as a point source at the plane, z0. The phase
delays of each port can be electro-optically adjusted leading to different input fields at z1.

3.2. Input source optimization

Our main objective now is to select phase delay values associated with each port of the EOM
array and for each target φq(χ` ,ψ` ; z0) so that the output field intensity of a given input/target
pair Iq(xi, yj; zP) after passing through the D2NN will be less likely to overlap with any other
member of the dataset. In other words, we want to identify phase delays on each port such that
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the resulting set of generated input field intensities are as orthogonal as possible. We propose a
simple method for selecting phase delays based on minimizing the overlap between the input field
intensities Iq(xi, yj; z0). It can be inferred from the optimization algorithm, that when a significant
amount of optical energy of the various input fields falls on the same pixel of a phase mask, they
compete to influence the value of the phase delay. As discussed in Ref [45], a D2NN performs
poorly if the field amplitudes (and by extension the intensity) are not well separated physically.
While the D2NN can be configured to minimize the errors under such a condition, it is simply
not possible to steer the optical energy of a given input towards the desired direction without
a significant amount leaking into the regions assigned to other inputs. This effect, referred to
as “ghosting", has been observed in fabricated D2NN [39,43]. As such, the best approach is
for the EOM array to generate fields uq(xi, yj; z1) that have as little overlap in field intensity (or
amplitude) as possible. In short, what we seek are values of φq(χ` ,ψ` ; z0) that minimize overlap
between all possible combination of two separate input intensities. The overlap, measured via an
overlap integral (OI) between intensities Iα(xi, yj; z1) and Iβ(xi, yj; z1) is given as:

OIαβ =
N∑
i

N∑
j

Iα(xi, yj; z1)Iβ(xi, yj; z1)∆x∆y (9)

we define the figure of merit is as the mean of the overlap integrals (MOI) across all possible
combinations of target intensities:

MOI =
Q!

2N2 (Q − 2)!

Q∑
α

Q∑
β>α

OIαβ . (10)

To simplify analysis the value Aq is chosen so that the overlap integral of a given intensity with
itself is unity (i.e. OIqq = 1),

Aq = OI−
1
2

qq . (11)

By doing this both the overlap integrals and MOI are bounded between 0 and unity. We seek to
minimize Eq. (10) with respect to the phase delays in plane 0

{φq(χ0,ψ0; z0), φq(χ1,ψ1; z0), . . . , φq(χQ,ψQ; z0)} = arg min(MOI). (12)

The derivative of the MOI with respect to the phase delay of the `th port and αth target is given as:

dMOI
dφα(χ` ,ψ` ; z0)

=
Q!

N2 (Q − 2)!

Q∑
β,α

N∑
i

N∑
j

[
<

(
u∗α(xi, yj; z1)

duα(xi, yj; z1)
φα(χ` ,ψ` ; z0)

)
×Iβ(xi, yj; z1)∆x∆y

]
.

(13)

It can be seen that Eq. (13) has a similar form to Eq. (6). In this case the unknown value is the
derivative which can be solved as before by setting ũ(xm, yn; zP) = duα(xi, yj; z1)/φα(χ` ,ψ` ; z0)
and wmnij(∆zp) = wq,mnij(∆zp). As we found previously, solving for the derivative in Eq. (13)
allows for the calculation of gradients to optimize the values of the phases. The derivative
calculations are independent from one another and can be performed in parallel, which was done
on a GPU.

Along with optimizing the values φq(χ` ,ψ` ; z0) we can also optimize the port position values
{χ` ,ψ`}. In this case we resort to a numerical approach of solving for φq(χ` ,ψ` ; z0) using
various values of {χ` ,ψ`} and selecting the one with the lowest MOI value. Because of the
nature of the EOM array all values of Ψ` can be assumed to exist along the center of the y-axis yc
for all values of `, which eliminates a variable. To further reduce the complexity, it assumed that
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the EOM array is symmetric about the x-axis (i.e. centered at xc), the width of the waveguide at
the end of the EOM array wport is constant (in addition to the other criterion), and that the spacing
between two adjacent ports dport is constant. These restrictions serve to reduce the number of
possible variables from N` (N` − 1) to 1. While it it is possible that the optimal result occurs
when these conditions are not true, this direct numerical approach would become impractical for
large values of Q and N` .

3.3. Input parameters for all simulations

In the approaching section, we analyze the beam steering capabilities of D2NN instances under
various conditions. The important varied parameters were the number of ports (N`), the number
of steering targets (Q), and the number of phase masks (P). In total, 27 different diffractive
neural networks were trained covering every permutation of {N` ,Q,P}; for each, the end-
firing waveguide arrangement was configured to have optimized input fields, or equivalently, a
minimized MOI. Each simulation also required several parameters to be defined and held static.
These are now described: a wavelength of λ = 1 µm was chosen, and the refractive index of the
system assumed propagation through air, n ≈ 1. The grid spacing resolution ∆x,∆y = 25 µm
and the number of square grid points N × N = 400 × 400 determined the size of the simulation
window to be 10 mm × 10 mm. Our choice was to define a simulation window centered at
xc = yc = 5 mm. This gave window bounds of [0, 2 ∗ xc] and [0, 2 ∗ yc]. These values, together
with wport, ∆z1 and λ, result in a Fresnel number of NF = .01 and a Rayleigh limit of rlimit = 1.22.
This ensured that we were within our input source assumptions. When optimizing the value of
dport, the search ranged from dport,min = 1 µm to dport,max = 100 µm in increments of ∆dport = 1
µm. The iterative gradient descent search used in our optimization was initialized with random
inputs for φq(χ` ,ψ` ; z0) or φ(xs, yt; zv). Each gradient descent search was performed over 100

Table 1. Summary of the parameters used in our simulations. Most
parameters were held static for every D2NN instance. Importantly, the number

of phase masks (P), steering targets (Q), and EOM ports (N` ) were varied
between three values. All permutations were simulated to obtain the 33 = 27

different D2NN instances.

Static Parameter Description Symbol Value

Window Center for x Axis xc 5mm

Window Center for y Axis yc 5mm

Resolution of x ∆x 25 µm

Resolution of y ∆y 25 µm

Number of Simulation Points N × N 400 × 400

Distance from EOM Phase Array to First Mask ∆z0 1 cm

Distance Between Masks ∆zp>0 10 cm

Distance from Final Mask to Output Plane ∆zP 1m

EOM Port Width wport 10 µm

EOM Optimal Port Spacing Search Range [dport,min, dport,max] [1 µm, 100 µm]

EOM Optimal Port Spacing Search Resolution ∆dport 1 µm

Wavelength of Light λ 1 µm

Refractive Index n 1

Varied Parameter Description Symbol Set of Values
Number of Phase Masks P {1,2,3}

Number of Steering Targets Q {3,4,5}

Number of EOM Ports N` {3,4,8}
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generations, with the lowest MOI or MSE result selected and stored. Additionally, the iterative
gradient descent search for the optimal dport and φq(χ` ,ψ` ; z0) was repeated for each port-target
combination. The values of dport and φq(χ` ,ψ` ; z0) with the lowest MOI was selected and used
as inputs for the corresponding D2NN instance. All simulation input parameters used in this
manuscript are gathered and summarized in Table 1.

4. Multi-directional beam steering results

In this section, we present the beam steering results of 27 different retrieved phase mask cascades.
These phase elements were designed by training D2NNs following the framework laid out in
section 2 in the context of the experimentally proposed active system of section 3. Due to the
difficulty of displaying the outputs for each of the 27 different simulations, we have chosen to
present a detailed walk-through of the simplest case. We then follow with the outputs related to
few more complicated cases before discussing the aggregated results and patterns that emerged.

4.1. Detailed walk-through: three ports, three steering states

The three port EOM array with a three target requirement (N` = 3, Q = 3) is the least complicated
source and target combination within our simulation set. Before we train this diffractive
neural network, we must identify the optimum dport and φq(χ` ,ψ` ; z0) for this arrangement.
Implementing N` = 3, Fig. 3 plots the lowest MOI as a function of port width for each Q obtained
via the iterative approach defined in section 3.2. From this, one can identify an overall minimal
value for Q = 3 of ≈ 0.214 occurring at dport = 15 µm. This optimal port spacing is then used in
conjunction with the protocol defined in section 3.1 to obtain the three port phase functions which
will generate three minimally overlapping input electric fields. Figure 3 demonstrated a MOI
varying insignificantly with dport for all N` = 3 cases; however, the minimum MOI increased with
Q. This correlation indicated that as the number of desired steering states increases, it becomes
progressively harder to define a unique set of non-overlapping input fields. A general corollary
arises from this: the amount of ghosting will always increase with increasing Q. Consider, for
example, the illustrative case of a N` = 3 port system commanded to produce an unreasonable
Q = 100 steering states. Because three electro-optic modulated ports would fail at producing 100
spatially distinct non-overlapping intensity patterns, the MOI would be large. In fact, the MOI
would be close to unity, meaning that the optimal steering arrangement would consist of energy
spread uniformly in the image plane. In other words, the concept of steering becomes lost.

Fig. 3. MOI vs dport for N` = 3 port EOM array with Q = 3 target states ( ), Q = 4 target
states ( ), and Q = 5 target states ( ).
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Equipped with the optimal dport = 15 µm and three φq(χ` ,ψ` ; z0) values, Eq. (8) is then used
to generate three input fields at the z1 plane. Each input field is assigned a corresponding target
output intensity (Fig. 4). The target intensities chosen were single 2 mm x 2 mm squares in
the output plane zP such that all optical energy was focused in an isolated region (Fig. 4(a)).
Outside the square target region, the intensity was zeroed, thus encouraging the desired condition
of minimal ghosting during neural network training. The generated input intensities from the
three port phase array appear similar (Fig. 4(b)), but a close inspection reveals a physical shift in
the bright and dark bands consistent with minimal intensity overlap (Fig. 4(c)).

Fig. 4. (a) The target state output intensities. (b) The corresponding input field intensities
generated by a N` = 3 port EOM array Q = 3 targets, (c) and an enlarged section of each
input fields showing the physical shift in the otherwise similar interference patterns.

The pairs of input and output field intensities of Fig. 4 constitute training data used to converge
three separate D2NN instances. We remind the reader that after reaching convergence, the network
layers come to represent cascaded phase masks which optimally connect the input and output
intensity training data. Each of these three instances investigated the use of one, two, or three
hidden layers. Figure 5 displays the cascade of phase masks that were retrieved. Examination
of the masks result in both intuitive and unexpected characteristics. In the P = 1 case, the
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single retrieved phase mask spatially converged to an array of distinct Fresnel lenslets (Fig. 5(a)).
These periodic lenses had the same center-to-center spacing as the bright and dark bands of
the input intensity fields; furthermore, the general orientation of the lenslets were biased every
three rows such that energy should be steered efficiently in the target directions depending on the
physical shift discussed in Fig. 4. In the P = 2 case, the D2NN qualitatively appeared to lessen
the modulation depth and lensing power of the individual lenslets (Fig. 5(b)). Interestingly, the
lenslet array appeared only in the first phase mask while the second layer formed larger “steering
zones" in the approximate shape of the 2 mm × 2 mm squares; however, further zooming into
these zones did not reveal any intuitive structuring. Bringing in a third hidden layer seemed
to have little effect on the first mask (Fig. 5(c)); instead, the steering zones discussed in the
P = 2 case appear to split into a coarse and fine adjustment with visible grating-like structures
forming. Generally speaking, we find that the increasing the number of hidden layers, P , gives a
filtering-like or factoring-like flavor to the resulting phase masks. This result is reminiscent of
the feature-filters that often arise when studying convolutional neural networks.

Fig. 5. D2NN phase masks generated for the three port, three target EOM array (N` = 3,
Q = 3) system at planes z1, z2, and z3. From top to bottom are the results for (a) P = 1
mask , (b) P = 2 masks, (c) and P = 3 masks. Emergent features include an array of
Fresnel lenslets with a periodicity matching the input intensities and grating-like structures

The output fields for the N` = 3, Q = 3 case resulting from each calculated phase mask
cascade, P , are displayed in Fig. 6. All output field values have been normalized so that the
largest intensity value in the window is unity. Qualitatively, the calculated output intensities
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recreated the desired target profiles of Fig. 4. A direct result was that as the number of hidden
layers increased, the D2NN were better able to simulate the target profile. To elucidate: the
ghosting effect seen on all three targets in Fig. 6(a), is notably reduced in Figs. 6(b) and (c).
As we see later, this trend was generally true across all values of Q simulated. In this system,
however, we found a significant amount of optical energy (> 58%) scattered outside the target
region. While some of the scatter was concentrated into wrong beam-steering zones, most was
uniformly dispersed throughout the simulation window with very low signal.

Fig. 6. Resulting output fields of the D2NN for a three port, three target system (N` = 3,
Q = 3). Results of (a) P = 1 mask , (b) P = 2 masks, (c) and P = 3 masks. We highlight
the off-target scattering or ghosting in the P = 1 case. This ghosting effect is mitigated
with increasing P with most of the scatter dispersed throughout the background.

4.2. Dependence on ports: five steering states

Of the 27 different D2NN instances we trained, the Q = 5 scenarios represented the most steering
constraints we imposed. As before, the process of finding the optimal EOM conditions, defining
the input and output training set, and converging a D2NN was performed. The optimization plots
for MOI vs dport for the N` = {4, 8} cases are displayed in Fig. 7 for each Q. We found a similar
MOI pattern of behavior as the three port simulation. Namely, as Q increased the larger the
average overlap decreased; however, unlike before, there was a clear dependence of MOI on the
value of dport. Larger values of dport resulted in larger MOI values, so that the optimum generally
favored a smaller but specific gap between ports. The optimum values for the four and eight port
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systems produced MOI values that were lower than the three port counterparts. The lowest MOI
values for a given number of targets was always observed in the eight port simulation. This result
is consistent with the expected behavior of phased arrays, as the number of elements/ports is
directly indicative of how well it can superimpose a unique non-overlapping optical pattern.

Fig. 7. MOI vs dport for (a) a four port EOM array and (b) eight port EOM array for three
target states ( ), four target states ( ), and five target states ( ).

We then took the optimized input fields for the three, four, and eight port system and assigned
five unique non-overlapping 2 mm × 2 mm square targets (Fig. 8(a)). Using P = 2 hidden layers,
three D2NN instances were then trained for the different values of N` (Figs. 8(b)-(d)). We choose
to present the two masks scenario here because the decrease in ghosting with N` is apparent in
each row. When comparing the data across all ports, the primary benefit of increasing N` was a
decrease in average MOI value. This in turn increased the average fraction of power on target.

4.3. Aggregate results and emergent patterns

We remind the reader that for each and every D2NN instance, we had to first find the optimum
dport and φq(χ` ,ψ` ; z0) which was dependent on N` and Q. The MOI computation only involved
the EOM phase array and therefore did not depend on the number of cascaded phase masks, P .
Extracting values from Figs. 3 and 7, Table 2 orders the optimal dport spacing and minimal MOI
for each situation we studied. We observed as a general trend that lower MOI values resulted
when a higher number of ports and lower number of targets were used; however, the lowest MOI
was not observed in the N` = 8, Q = 3 case as would be expected. This could have been the
result of our iterative gradient descent search missing the optimal port value or the assumption of
a uniform dport value breaking down.

After training the full 27 D2NN instances, output field intensities were calculated like in Figs. 6
and 8. Ideally, each target steering state is perfectly recreated, resulting in 100% of the input
power falling within the appropriate 2 mm × 2 mm square. We quantified the phenomenon by
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Fig. 8. (a) Q = 5 target states with the respective output fields of the D2NN using P = 2
phase masks. Results for (b) N` = 3 , (c) N` = 4, and (d) N` = 8 port EOM array.

Table 2. Tabulated number
of ports and target steering
states with corresponding

optimal dport in order of
lowest MOI . A lower MOI

directly corresponded to a
smaller amount of ghosting.

N` Q dport (µm) MOI

4 3 24 .126

8 3 41 .143

8 4 21 .186

4 4 57 .193

3 3 15 .214

8 5 4 .223

4 5 11 .254

3 4 55 .309

3 5 33 .357
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Fig. 9. Fraction of power in target steering region vs the number of mask for 3 port(a), 4
port (b), and 8 port (c) EOM waveguide array for 3 target states ( ), 4 target states ( ), and 5
target states ( ). A piecewise linear fit for each respective target steering state ( , , ) that
passes through the average fraction of power on targets for each mask number is also shown.
Each mark represents one of 3, 4, or 5 target states.

calculating the fraction of power impinging on this designated square target region versus the
total power in the simulation window for every scenario. For the N` = 3 case, the fraction of
power on target vs. P for every steering number Q is plotted in Fig. 9(a). The results have two
key implications: one, increasing the number of masks increases the amount of power that can be
focused in the target region; two, as the number of simulated targets increases, the more difficult
it is to confine the optical energy into the target region. In this three port case, the best results
were observed for the three target system when at least two masks were used (∼ 40% power on
target). The worst results occurred when a single mask was used to guide to five steering states
(< 12% power on target). This corroborates the trend we observed in Fig. 3.

The calculated fraction of power in the target regions for all N` = 4 and N` = 8 cases are given
in Figs. 9(b) and (c). The two trends observed in the three port system were held true for the four
and eight port system as well. As before, increasing the number of masks increased the fraction
of power in the targeted region (decreased the ghosting). The effect, however, gave diminishing
returns after two layers. On average, the addition of a third layer either showed little ghosting
improvement or slightly increased the scattering. This latter behavior is likely due to the the fact
that the best set of masks were simply not found by our iterative gradient descent search. Overall,
the key findings are as follows:

1. We found a consistent correlation between the ability of D2NN to steer optical energy
into a specific region and the mean intensity overlap of the input fields. In general lower
MOI values resulted in D2NNs that could steer more optical energy (up to ∼40%) into the
designated steering state.

2. The ability of EOM optical arrays to produce low MOI is contingent on the number of
ports and the number of target steering states. In general, the higher the number of target
steering states, the larger the MOI. This can be mitigated however, by increasing the
number of ports as we found this lowers the MOI for a given number of targets.
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3. The D2NN ability to steer the optical energy of optimized inputs to the target region
consistently benefited from cascading more phase masks. While a two gave the most
returns in our investigation, a third mask slightly increased the power impinging on the
target region in most of the cases.

5. Conclusions

In this manuscript we have demonstrated how the combination of EOM arrays and D2NN can
be designed for use in beam steering. By exploiting the computational capabilities of D2NN
as image classifiers, we were able to simulate a device that could take unique inputs from a
user controlled optical source (EOM array) and steer its optical energy to designated regions of
space. Our study develops a general procedure for selecting the optimal outputs of the EOM
array to allow for efficient steering by the D2NN and builds on the work done in previous studies
with neural networks. We examined how the performance of the device, as measured by the
fraction of energy steered into a given region, would vary with parameters related to the number
of individual sources in the EOM arrays, number of target output intensities, and number of
cascading phase mask in the D2NN. We observed that in general the more elements the EOM
array has the easier it is to design a D2NN that can produce the desired target intensity profile.
Additionally, the simulated systems performed best when at least two phase mask were used,
consistent with what has been reported in previous studies. Interestingly, recognizable features
such as fresnel lenslets and gratings structures emerged spotaneously with the increasing number
of layers. For a given phase mask in the system, only one of the aforementioned features could
be recognized with the other features either not being present at all or existing in one of the other
phase mask in the system. This indicates that the D2NN are dividing up the filtering task in a
manner similar to their electronic based electronic deep neural network counterparts. The key
difference in the D2NN case is that the physics of light give us useful incite into the nature of the
structures being generated.

We note that the method used for calculating the gradients was brute force and as a consequence
is relatively slow compared to other routines in the algorithm such as forward propagation and
determination of the errors. As discussed in the Sec. 2.3, calculating the derivative of the field
with respect to the phase of a given pixel is analogous to placing a −j phase mask and an aperture
in the system that blocks out all other pixels in the plane of interest (astij(zv, zp) term in Eq. (7))
and then calculating the Rayleigh-Sommerfeld integral. To obtain derivatives for every pixel
on every mask we must shift the aperture to the relevant position and recalculate the integral
equation again. The process can be impractically slow for large values of Q and P . However,
there is hope in the sense that we should be able to obtain the derivatives while only having to
calculate the Rayleigh-Sommerfeld integral once. Heuristically we know this is true because
if we eliminate the shifting aperture but retain the −j phase mask, the output will simply be
the linear super-position of all the derivatives from every pixel in any given plane. In essence,
without the aperture we would be calculating all the derivatives at once. Unfortunately, we
are interested in the individual values of gradients with respect to an individual pixel and not
the sum of the individual gradients of all pixels. So, we resort to using the shifting aperture
function astij(zv, zp) as a spatial filter to block out the contributions to the derivative from other
pixels. We believe adjoint sensitivity approaches, like those used in more rigorous full wave
FDTD simulations, may be the key to determining how to more efficiently calculate gradients. In
those problems it is imperative that the calculation of gradients, which involve 2 at minimum
calculations of the full wave solver, are minimized. Adjoint sensitivity analysis has been used
to minimize simulations to at most 2 full wave calculations. We believe based on the heuristic
argument presented above, that adjoint sensitivity analysis can be applied to D2NN, to limit the
number of simulations necessary for the gradients to 2 calculations of the Rayleigh Sommerfeld
integral.
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Direct applications of our work include optical phase array based LADAR systems such as
those currently being explored in autonomous vehicle research. The architecture presented here
is capable of performing 2D beam steering using only a 1D phase array sidestepping the technical
hurdle of fabricating 2D phase arrays. Furthermore, our methods provides a direct path to getting
the best performance for a limited number of elements present in the phase array and a given
number of desired target steering states. While we found it difficult to increase the steering
states without degrading the steering capabilities of the D2NN, one possible solution may be to
incorporate additional wavelengths taking advantage of optical dispersion in both the EOM array
and the D2NN. Our study was limited to a single laser wavelength, but the methods outlined
here can easily be extended to incorporate more values accounting for the requisite dispersive
effects of the material/structures used in the EOM waveguides and D2NN phase masks. With
wavelength acting as a new degree of freedom, it should be possible to design a single EOM
arrray and D2NN system that can beam steer through both the color and spatial structure of the
field input.
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