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Abstract: Optical materials engineered to dynamically and selectively manipulate electromag-
netic waves are essential to the future of modern optical systems. In this paper, we simulate
various metasurface configurations consisting of periodic 1D bars or 2D pillars made of the
ternary phase change material Ge2Sb2Te5 (GST). Dynamic switching behavior in reflectance is
exploited due to a drastic refractive index change between the crystalline and amorphous states
of GST. Selectivity in the reflection and transmission spectra is manipulated by tailoring the
geometrical parameters of the metasurface. Due to the immense number of possible metasurface
configurations, we train deep neural networks capable of exploring all possible designs within
the working parameter space. The data requirements, predictive accuracy, and robustness of
these neural networks are benchmarked against a ground truth by varying quality and quantity
of training data. After ensuring trustworthy neural network advisory, we identify and validate
optimal GST metasurface configurations best suited as dynamic switchable mirrors depending
on selected light and manufacturing constraints.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Bodies of scientific literature exist describing various methods that can be utilized for both
dynamically and selectively controlling light through a material. Dynamic behavior refers to an
induced change such that subsequent light-matter responses are altered. Selectivity, in our context,
refers to a material responding to different initial conditions of light in a pre-engineered way.
There are many well-known ways to induce dynamic behavior; to name a few: the photo-elastic,
thermo-optic, and photo-refractive effect, the Pockels and Kerr effect, and the re-orientation of
liquid crystals [1,2]. The focus of this paper exploits another intriguing candidate for creating
dynamic behavior: chalcogenide-based phase change materials (PCMs)—a glassy material class
with a host of amenable switching-related properties [3,4]. In contrast to standard glassy materials,
PCMs uniquely experience high-speed phase transitions, long-lived thermal stability, sharp
resistance changes, overall chemical stability, and repeatable reversible transitions [5,6]. The
concept behind PCMs is straightforward. Like many glassy materials, the solid form of PCMs can
exist in both a crystalline and an amorphous state. When the PCM reaches a threshold temperature,
the material crystallizes. On the other hand, if the glass is quenched before this threshold, then it
solidifies with an amorphous structure. Laser light or electrical pulses can be used to illuminate
and heat the sample past the glass-transition temperature. If a short and intense stimulus is
used, the heat dissipation will be fast enough to lead to the amorphous state; otherwise, the
crystalline state is formed [7]. From an optics viewpoint, the most notable trait is a large low-loss
refractive index change, usually on the order of unity, between the crystalline and amorphous
states stemming from a drastic atomic rearrangement. The amalgamation of these properties
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has elevated PCMs into a special class of dynamic materials first pursued and commercialized
for optical data storage [8–12]. Although various PCM candidates have been studied [13–15],
one of the most successful to date in terms the aforementioned properties, is ternary Ge-Sb-Te
compounds, specifically the Ge2Sb2Te5 mixture (GST) which boasts amorphization times of less
than a nanosecond and is stable over millions of switching cycles [7,16,17]. Consequently, GST
fabrication capabilities have matured over the years.

With respect to selective optical behavior, one often relies on inhomogeneities within a material
system. Classic cases are optical gratings and phase masks which split light spatially and/or
spectrally due to periodically engineered material distributions with size scales on the order of the
wavelength. Dispersion itself can be viewed as a source of optical selectivity. Material dispersion
arises from an inherent variation of refractive index with wavelength, and because this behavior
is complex-valued, any material will innately be frequency selective in terms of its refractive,
absorptive, reflective, and transmissive optical properties. Waveguide dispersion and modal
dispersion seen in optical fibers results from the geometrical arrangement of refractive index
and is often prudently modified for optimal waveguiding [18]. In short, customized selectivity
of optical properties becomes possible by arranging materials into well thought-out geometries
at the micro- and nano-scale. These approaches seek to exploit resonance features, photonic
bandgaps, and waveguiding properties. Examples include hollow-core photonic crystal fibers
[19,20], metamaterials [21–25], and dielectric multilayer thin films [26–30]. One of the earliest
scenarios of prescribing optical selectivity for reflection and transmission spectra can be found in
the field of multilayer optical coatings. Attributable to many degrees of freedom, the thickness
and material composition of every layer can often be adjusted such that a desired reflection
or transmission spectra is obtained [29,31]. Numerical methods have been developed which
inversely design these thin film stacks to fit any desired reflection profile [32–34]. Unfortunately,
multilayer coatings have limitations. In order to achieve a given spectral specification, sometimes
hundreds of layers are required leading to a lengthy and costly fabrication process. When designs
are needed for longer wavelength regimes (e.g. infrared), the individual layers must necessarily
become thicker. This leads to longer deposition times as well as the introduction of secondary
problems such as stress delamination or spallation [35,36]. Without proper measures, multilayer
stacks can also suffer from a blue-shift phenomenon whereby light incident at oblique angles
cause the prescribed reflection bands to shift toward shorter wavelengths [37].
More recently, metamaterials have come into focus as an alternative means of selectively

tailoring the spectral response of light [21,38,39]. Because of the near infinite degrees of design
freedom, metamaterial devices hold promise as a way to obtain multi-functional selectivity.
Composed of nanoscale scatterers, these engineered materials have since demonstrated novel
control over several properties of light such as polarization [40], absorption [41], reflection
and transmission [42], and refraction [43,44]. Progress into all-dielectric metamaterials has
gained traction motivated in part by the need to avoid losses characteristic of metallic-based
metamaterials [24]. A simpler version of the metamaterial is the 2D subclass, the metasurface.
Metasurfaces are composed of a single patterned layer grown on a substrate and have been
investigated for a variety of applications [45–47]. In particular, all-dielectric metasurfaces have
demonstrated exceptional performance in regards to high quality low-loss reflectors [42,48] and
transmissive achromatic lenses [8].

The potential of identifying dynamic and selective reflectors by combining the dynamic phase
change characteristics of GST with the selectivity offered by metasurfaces is apparent; however, a
key problem stands in the way: the sheer amount of possible designs makes optimizing to a desired
reflection spectra intractable. Even a relatively simple metasurface has a near infinite number of
ways to arrange the surface pattern. This is further complicated by the conditions of the incident
light, which can be described by polarization, beam shape, wavelength, and inclination/azimuthal
angle. Each of these properties affect the response of the metasurface. Furthermore, when
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utilizing a dynamic material like GST, each and every metasurface configuration must link
the dispersive properties of both the crystalline and amorphous states. Even with modern
computing resources and highly optimized computational methods, comprehensively searching
this immense parameter space is infeasible. For this reason, any ability to design metamaterials
with a prescribed functionality has required a keen understanding of the underlying physics;
for example, past analyses have looked at Fano resonances [49], adjoint methods [50], or Mie
scattering [22,24]. Yet these approaches are always bespoke to a particular meta structure and can
prove difficult to implement for non-standard geometries. Thus, these usual options necessarily
move away from a general methodology. However, with the recent resurgence of machine
learning approaches, numerical methods in combination with artificial neural networks (ANNs)
are now being leveraged to generally approach this problem set [51–56]. Various techniques
exist to find and optimize optical devices with specific properties and/or task driven applications.
Some such techniques include the direct binary search (DBS) method [57,58], objective-first
(OB-1) algorithm [59–61], topology optimization (TO) [62], and genetic algorithms (GA) [63].
One particularly promising study leverages ANNs as highly efficient function approximators.
By providing a training set of parameterized metasurfaces linked to simulated output reflection
and transmission spectra, an ANN learns to accurately approximate the numerical method used
to generate the data. This spectra predicting network (SPN) [51,52] enables a key benefit as,
once trained, it is many orders of magnitude faster at simulating reflection and transmission
spectra when compared to the original computational method. The speed-up allows one to
comprehensively explore large parameter spaces and ultimately identify devices subject to a set
of constraints.
In this paper, we investigate dynamic and selective GST metasurfaces consisting of either

periodic bars (1D case) or cylinders (2D case). We judiciously sample geometries within
fabrication tolerances parameterized by lattice spacing, unit cell feature height, and unit cell
feature width/radius. For each arrangement, output reflection and transmission coefficients
are computed with rigorous coupled wave analysis (RCWA) over a range of IR wavelengths,
angles of incidence, polarizations, and both GST phase-states. These results are used to train
spectra predicting artificial neural networks capable of learning the relationship between the
input conditions and the output reflection and transmission values. A detailed study of the
SPN training requirements (quality and quantity of necessary training data) is performed for
the computationally inexpensive 1D metasurface case and then harnessed for the slower to
compute 2D metasurface case. Merit functions are applied across the SPN predictions identifying
metasurface configurations with optimal infrared reflection/transmission switching properties.
Several optimal designs are identified for different incident light conditions and then re-computed
with RCWA to verify their behavior. While other GST and non-GST switchable devices exist
[64–71], to the best of our knowledge we were able to find for the first time an angle and
polarization independent high-contrast switchable reflective/transmissive metasurface for SWIR.
And although this work focuses on GST metasurfaces, the methodology introduced is generally
applicable to other active material classes.

2. Problem setup, training data collection, and ANN architecture

Consider two metasurfaces consisting of either 1D periodic GST bars or 2D cylindrical pillars
surrounded by air on an alumina substrate (Fig. 1). Regardless of this metasurface dimension,
D, both systems can be parameterized by a lattice spacing, Λ , a feature height, H, and a feature
width, X (Fig. 1(a)). The parameter X represents the half width of the bar in the D = 1 case (Fig.
1(b)) and the radius of the pillar in the D = 2 case (Fig. 1(c)). The lattice spacing in the D = 2
case is assumed to be square and thus, Λx = Λy = Λ. Light of wavelength, λ , is incident with a
polarization, P, and inclination angle, θ. The material dispersion and losses, ηGST(λ), depend on
whether the crystalline (ηcGST(λ)) or amorphous state (ηaGST(λ)) is present. See Appendix A for
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a list of important symbols used in the manuscript and Appendix B for the material dispersion
curves used in our simulations.

Fig. 1. Schematic of GST metasurfaces on alumina substrates. (a) Side view illustrating
the parameterized surface and the initial light conditions. (b) Top view of the 1D GST
metasurface. (c) Top view of the 2D GST metasurface.

For each and every combination of geometric parameters and light conditions in the set:
{X,H,Λ,D, θ,P, λ, ηGST(λ)}, a single reflectance and transmittance coefficient, R and T , is
able to be computed via RCWA. Each pair of computed coefficients satisfy R + T ≤ 1 with the
equality occurring when losses are insignificant. Because brute-force sweeping the configuration
space is infeasible, our goal is to train ANNs capable of interpolating this full design space
from a small random sampling. Although training data could be collected by sampling from
this 8 dimensional input space, such an approach leads to superfluous data collection and
hamstrings the ANN training, analysis, and optimization. A more prudent approach is to reserve
the input configuration space to only the geometric parameters Ξ = {X,H,Λ} and compute
for each combination of {D, θ,P}, a reflection and transmission spectra for both GST states,
Φ = {R(λ, ηaGST(λ)),T(λ, ηaGST(λ)),R(λ, ηcGST(λ)),T(λ, ηcGST(λ))}. The sets, Ξ and Φ, are
introduced to elucidate the input and output training data format that a single training datum, Ψ =
{Ξ,Φ}, assumes. In addition, the notation Φ̂ = {R̂(λ, ηaGST(λ)), T̂(λ, ηaGST(λ)), R̂(λ, ηcGST(λ)),
T̂(λ, ηcGST(λ))} will be used to distinguish between neural network spectra predictions and
RCWA simulated spectra, Φ. Note that in the form Ψ, a single training datum contains the
spectral switching information caused by the GST phase-state change for each uniquely chosen
design Ξ. Furthermore, this grouping is amenable to our situation since values stored in Ψ will
take on a range of values while the remaining initial conditions, {D, θ,P}, will take on discrete
choices. We are left with two main setup tasks; the first is to define the combinations of {D, θ,P}
and to wisely set bounds and resolutions on the values within Ξ and Φ; the second is to define a
procedure which will allow for high throughput collection of training data in the form, Ψ.

2.1. Constraining the metasurface sampling space

Defining {D, θ,P} for our simulations is straightforward. D can take on two values,D ∈ {1, 2},
and the polarization can be either s- or p- polarized, P ∈ {s, p}. Although the inclination angle
could take on a range of values, we restrict ourselves to two discrete cases, θ = {0◦, 45◦}, in
order to identify normally incident mirrors or folding mirrors. Thus there are 23 = 8 possible
combinations of {D, θ,P}. For each individual combination, the collection of training data is in
a format given by Ψ. Since we are ultimately interested in identifying switchable IR reflectors,
we set a wavelength range of 1 µm ≤ λ ≤ 3 µm with a step size of ∆λ = 4 nm. Thus, the
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length of each Φ containing the reflection and transmission spectra of both GST phase-states is
501 × 4 = 2004 elements long.

Next we set the bounds and resolutions for values contained in Ξ. The simplest of these values
are the feature heights, H, since they are independent of all other parameters. Selection ranges
are capped between 0.05 µm ≤ H ≤ 1 µm with a resolution of ∆H = 10 nm dictated by known
fabrication tolerances. As an extra measure, we account for a 6% reduction in feature height
during the transition between amorphous to crystalline phases. When defining the range of the
feature width, X, one must only ensure that no overlap with the next unit cell occurs. This is best
accomplished by locking the range such that 0 ≤ X′ ≤ 0.5, where X′ = X/Λ is the feature width
scaled by the lattice spacing. This scaled feature width is set to a resolution of ∆X′ = 0.005
stemming from the fabrication tolerances of Λ. Like the feature width, the lattice spacing, Λ,
can assume any value as long as it does not cause overlap in the unit cell; however, because our
eventual goal is to identify highly switchable IR reflectors, we are only interested in Λ size scales
where this is possible.

Previous studies of the electromagnetic modes within all-dielectric metasurfaces [23,72,73]
offer the perspective that metasurfaces can be understood in terms of coupling and interference of
propagating waveguide array modes (WGAMs) at the layer interfaces. This analysis leads to the
conclusion that metasurface configurations touting high reflection or transmission are the result
of the interference of a small number of WGAMs – termed the high contrast metasurface (HCM)
regime [72]. By computing these WGAMs, one can restrict the metasurface lattice spacing to only
the regions capable of high reflection and transmission. Photonic crystal band diagrams arising
from the periodic structuring of the surface geometry are equivalently the cutoff frequencies
of these WGAMs as a function of X′, inclination angle, polarzation, ηGST, and wavelength.
Therefore, by extracting the photonic crystal band structure, one can determine the number
of WGAMs able to exist within the metasurface. The lowest band solution can be correlated
to a minimum lattice spacing, Λlow(X′, θ,P, ηGST, λ) , where all Λ<Λlow(X′, θ,P, ηGST, λ)
have a single WGAM propagating. This defines the so-called effective medium (EM) regime
characteristic of metamaterial studies aiming to change effective constitutive properties of a
material. Floquet-Bloch theorem can then be used to correlate a maximum lattice spacing,
Λhigh(θ, λ) = λ/(1 + sin θ) [73], where all Λ ≥ Λhigh(θ, λ) results in more than one diffraction
order and is therefore not useful for single beam high reflection or transmission. By following
this general procedure, the simulation region of interest can be reduced down to lattice constants
between Λlow(X′, θ,P, ηGST, λ) ≤ Λ<Λhigh(θ, λ) ultimately decreasing the amount of training
data to be collected. Again, the resolution is set based on fabrication tolerances, ∆Λ = 10 nm.
Table 1 organizes the results of our metasurface design sampling space for the GST metasurfaces.

Table 1. Metasurface sampling space for values in Ξ and the wavelength
range for each computed spectra in Φ.

Input Parameter Range Resolution

Feature Height, H 0.05 µm ≤ H ≤ 1 µm ∆H = 10 nm

Scaled Width, X′ 0.0 ≤ X′ ≤ 0.5 ∆X′ = 0.005

Lattice Spacing, Λ Λlow(X′, θ, P,ηGST,λ) ≤ Λ<Λhigh(θ,λ) ∆Λ = 10 nm

Wavelength, λ 1 µm ≤ λ ≤ 3 µm ∆λ = 4 nm

2.2. Procedure for collecting training data

For each {D, θ,P}, sampling a metasurface design is done by randomly assigning values to
H, X′, and Λ within the ranges and resolutions defined in Table 1. Since the bounds of Λ are
dependant on other parameters, a lookup table is generated containing possible values ofΛlow and
Λhigh. To calculate the values of Λlow the open source program MIT Photonic Bands (MPB) [74]
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was leveraged (see Appendix C for an example calculation). To simplify the size of this lookup
table, we set λ = 2 µm, which locks the value of ηGST(λ = 2 µm). Although this assumption
can lead to instances of Ξ lying outside the HCM regime for λ , 2 µm, the small amount of
superfluous data collected is worth the time saved in pre-processing the lookup table. Moreover,
in this manuscript we desire to find a optimized switchable mirror for λ = 2 µm. The parameter
X′ is then randomized and used to set the appropriate bounds of Λ, which can then be randomly
assigned itself. X is then reverted back from the scaled form by the simple relationship X = X′Λ.
Finally, these values are grouped in the format Ξ = {X,H,Λ}. This process is repeated until a
sufficient amount of input training data is obtained. The question of what constitutes a sufficient
amount is analyzed in Sec. 3.

Equipped with the randomly sampled input values constrained to the HCM regime for a given
{D, θ,P}, we begin the computation of Φ for each Ξ. To do this, we implement our self-built
Machine Accelerated Nanoscale Targeted Inhomogenous Structures (MANTIS) framework. The
workflow is summarized as such:

1. An instance of Ξ with settings {D, θ,P} is loaded representing a unique metasurface
design. A twin design is created and the crystalline/amorphous GST dispersion data is set
respectively.

2. Stanford’s Stratified Structure Solver (S4) [75] is leveraged to perform RCWA on the two
designs. The computational accuracy of RCWA robustly converges with increased spatial
harmonics, nH. In our context, nH = 15 is accurate to within ≈ 0.9% of any nH = 51
simulated spectra. Furthermore, nH = 51 is found to approximate the true spectra for
the D = 1 case as adding more harmonics does not change the resulting spectra. For
D = 2, the amount of spatial harmonics must be squared to capture the same accuracy (i.e.
nH = 152 and nH = 512). We only used nH = 152 for the D = 2 case since we must rely
on the SPN for results.

3. Post-processing extracts resulting reflection and transmission spectra on the instance, Ξ,
for both GST states. These results are stored in the form of Φ.

4. The Signac data management framework [76] is used to bundle the input parameters with
the related output spectra in the form of Ψ. This is compressed as a binary file with
metadata for later recall.

5. Steps 1-4 are looped through each uniquely generated value of Ξ.

6. The bounding procedure described in this section and step 5 is repeated for 7 possible
combinations of {D, θ,P}. There is a redundancy in calculating both s- and p-polarized
light incident at θ = 0◦ for D = 2 due to azimuthal symmetry, thus the total number of
combinations (eight) is reduced by one.

To summarize, following the protocol of this section results in seven separate categories of
training data. Each collection covers all combinations of metasurface dimension, polarization,
and inclination angle, while also reducing any redundancies. Within each collection, training
data exists in a format Ψ = {Ξ,Φ} suitable for ANN training. The values of each Ξ contain the
geometric parameters of a unique metasurface design which was constrained to be within (or
near) the HCM regime and within fabrication tolerances. For each unique Ξ, the values of Φ
contain the RCWA computed reflection and transmission spectra for both GST states. Details on
the necessary accuracy on the RCWA computed spectra is addressed in Sec. 3.
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2.3. Spectra predicting neural network architecture and training

The acquired training data can then be piped into a spectra predicting neural network (SPN)
architecture [51,52]. For ease of interpretability and since all the values in the training set Ψ are
on similar scales near unity, the raw device parameter, Ξ, and spectral data, Φ, were used for
training. With adequate training data, this type of ANN is able to mimic the original RCWA
computations, but benefits from a ×106 speed-up [52]. Our SPN is created using the Keras API
with a TensorFlow back-end. Illustrated in Fig. 2, the architecture consists of seven dense layers.
The input layer is sized to accept the geometric parameter vector Ξ. The network topology then
expands and segments twice into four different routes. The first segmentation occurs between
the first and second hidden layers, where the 1002 nodes in the first hidden layer are densely
connected to two separate second hidden layers, each with 2004 nodes. The two second hidden
layers are independent of each other and represent the aGTS and cGST phase-states. Each of
the hidden second layers then split again and the 2004 nodes in each second hidden layer are
densely connected to two separate 4008 node third hidden layers, representing the splitting
between reflection and transmission spectra. Thus, there are four independent routes that all
share the same first hidden layer. Each of these four segments terminate with a 501 node output
layer correlating to the wavelength and GST-state dependent reflection and transmission spectra
values stored in Φ̂, where Φ̂ is sought to match Φ. The rectified linear unit (ReLU) activation
function is used between each layer except for the last, which is sigmoidal in order to restrain
output node values between [0,1]. The training batch size is set to 256 and the training-validation
ratio is 90%/10%. The SPN implements the Adam optimization routine with mean square error
(MSE) for the loss function. Initial Adam learning rate hyper-parameters are set to γLR = 0.001,
β1 = 0.9, and β2 = 0.999. The SPN is continually trained until 50 epochs pass without improving

Fig. 2. The architecture of the implemented spectra predicting network. The SPN we use is
a segmented dense ANN consisting of seven layers: an input, an output, and five hidden. The
first hidden layer branches into two segmented paths for the purpose of separating the aGST
and cGST phase-state information (subscripted a and c). Each of these in turn branches
again at the third layer in order to separate reflection and transmission spectra (subsrcipted
R and T). The input layer has three nodes representative of Ξ, whereas the collection of
four outputs is either Φ or Φ̂ depending whether the SPN is being trained or used to make
predictions. Each of the four outputs has 501 nodes containing the spectral value for all λ
described in Table 1.
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the MSE of the validation set by more than 10−6, after which the weights of the SPN that yields
the smallest MSE for the validation data are kept to ensure there is no overfitting.
Various training set sizes, α, can be used to converge a SPN. We explore the SPN predictive

ability resulting from five different training set sizes, α ∈ {0.1%, 0.5%, 1%, 2%, 3%} each
containing either coarse (nH = 15) or fine (nH = 51) spectral data. The percentages represent the
fraction of the randomly sampled designs to the total design space. Each trained SPN is then
used to interpolate the full HCM regime. An L2 normalization merit function is then applied to
pick out optimal switching metasurface designs. All SPN identified optimal designs are then
re-confirmed with high spatial harmonic RCWA simulations.

3. 1D GST Case: SPN benchmarking and identifying optimal switching mirrors

Recall that the purpose of the SPNs is to accurately mimic the computations of RCWA for each
and every design within a parameterized space. Two frequently asked questions result: (1) how
much training data does the SPN require and (2) how accurate must each training datum be in
order to make trustworthy predictions. To our knowledge, these two questions are often ignored
at first and later on justified by verifying an identified SPN predicted design with the original
CEM method. This ansatz-like approach is certainly valid and often the necessary method when
exploring an immense or computationally expensive parameter space. Fortunately, the D = 1
GST metasurface case provides an opportunity to truly answer these two questions because
brute-force computation of the entire parameter space with a dense resolution is possible. The
high resolution collections of RCWA computations provide a "ground truth" to compare different
SPNs against. In this section, we perform this comparative analysis for different SPNs trained
on different set sizes. After confirming a sufficiently trained SPN, we harness it to identify an
optimal switching mirror at λ = 2 µm.
By gradually increasing the spatial harmonics in the RCWA simulations, the computed

reflection and transmission values converge. For the geometries in question, we determined
that nH = 51 was sufficient to numerically approximate the true curve and what we consider for
the rest of the manuscript as the "ground truth" for the 1D GST case. Likewise, we found that
nH = 15 leads to an average spectral error magnitude of 0.9% from this ground truth. In all test
cases, nH = 15 captured all key spectral features, and thus was the minimum acceptable RCWA
resolution we imposed. Following the protocols put forth in the previous sections, training data
was gathered for the D = 1 case using both nH = 51 and nH = 15. This resulted in eight data
collections taking the form of Ψ encompassing both RCWA resolutions for each of the four
combinations of polarization and inclination angle. Applying only the upper bound, Λhigh, the
total number of possible GST bar designs that were non-diffractive (i.e. existing in either the
effective medium or high contrast regime) was ≈ 2.02 × 106 and ≈ 1.19 × 106 for light incident
at θ = 0◦ and θ = 45◦, respectively. By using the WGAMs to bound Λlow, the total number
of necessary simulations was reduced to ≈ 56.4% and ≈ 54.6% for θ = 0◦ and θ = 45◦. This
effectively cut the total computation time in half. Using this bounding, brute-force computing
the entire parameter space was on the order of hours for each nH = 15 collection and days for
each nH = 51 collection (about a 40× difference) for a system parallelized across 128 real cores.
The amount of training data and the computation time for each collection is summarized in Table
2, where the values in bold are the number of designs simulated and the appropriate computation
times. Note for the D = 1 case, polarization does not affect the amount of possible designs
(discussed in Appendix C.), but does affect the spectra computations.

3.1. SPN Benchmarking: Training set size and resolution

A different SPN is trained for every combination of α and nH. Each SPN is used to interpolate
reflection and transmission spectra for every geometric parameter, Ξ, and GST phase-state
combination, which can then be compared against a ground truth (i.e. RCWA simulations that



Research Article Vol. 28, No. 17 / 17 August 2020 / Optics Express 24637

Table 2. Training data collection: 1D grating of GST bars.

Amount of obtained data in format Ψ Compute time

θ P NDa HCMb HCM/ND nH = 15 nH = 51

(◦) {s, p} (million) (million) (%) (days) (days)

0 s 2.02 1.14 56.4 0.1 4.0
0 p 2.02 1.14 56.4 0.1 4.0
45 s 1.19 0.65 54.6 0.6 2.3
45 p 1.19 0.65 54.6 0.6 2.3

aND: nondiffractive regime consists of EM and HCM; EM: effective medium regime;
bHCM: high contrast metasurface regime.

used nH = 51). This procedure and analysis is repeated for all θ and P. This immense amount of
information is needed for complete benchmarking, but displaying each and every comparison
would overwhelm this manuscript. Thus, in this section we will simply show the results for
{θ = 0◦,P = s}. For clarity, it is useful to invoke the notation Φ(nH) and Φ̂(nH,α) in order
to distinguish between RCWA spectral data computed from nH harmonics and spectral data
predicted from a SPN trained on a fraction, α, of the HCM parameter space using Φ(nH) sampled
data. For example, Φ̂(15, 1%) would refer to SPN generated spectra having been trained on a
random assortment of ≈ 11, 400 designs (i.e. 1%) from the 1D HCM parameter space using the
RCWA with nH = 15 resolved GST spectra.

Figure 3 shows the reflectance of amorphous GST spectral data, R(2 µm, ηaGST), at a height and
wavelength cross-section, H = 0.5 µm and λ = 2 µm. We remind the reader that our choice to
display the data along H = 0.5 µm and λ = 2 µm is to provide an example visualization; however,
the full benchmarking accounts for all heights and wavelengths bounded by Table 1. The first row
(Figs. 3(a.0-c.0)) shows the partially converged RCWA Φ(15) aGST reflectance approximation,
the ground truth Φ(51), and the absolute difference between these two spectra. We found that
Φ(15) accurately captured the main spectral features of the ground truth with error <2%, but
suffered from fictitious high frequency oscillations around regions of large reflectance gradients
that lead to errors >10% (Fig. 3(b.0)). Figures 3(a.1-a.5) graphically show the sparse random
sampling of coarse RCWA data Φ(15) for the different set sizes, α ∈ {0.1%, 0.5%, 1%, 2%, 3%}.
This sampled data was used to train five different SPNs, Φ̂(15,α). Figures 3(b.1-b.5) illustrate
the resulting predictive capability of each of these. Figures 3(c.1-c.5) then compare the absolute
error of these predictions with the ground truth. Remarkably, even the sparsest sampling of
nH = 15 data, Φ̂(15, 0.1%), resulted in features consistent with the true Φ(51) spectra. As a
general trend, increasing the amount of coarse training data improved the SPN predicted spectra.
Furthermore, as the coarse training data increased, the absolute difference of the SPN predictions
with the ground truth approached the absolute difference between Φ(51), and Φ(15). This gives
evidence that a SPN is indeed able to mimic the original computational method, but is ultimately
limited in predictive power by the resolution of the RCWA training data.
We can gain valuable insight investigating the moments of the absolute differences between

SPN and RCWA simulations (i.e. mean, µ; variance, σ2; skewness, γ; and kurtosis, κ). The
first moment is the mean absolute error (MAE), µ, which is an L1 norm and is plotted as a
function of training set size in Fig. 4(a). The MAE averages the spectral error magnitudes over
all wavelengths, λ; phase-states, ηGST; and device geometries, n. Written more explicitly,

|Φ̂(nH,α) − Φ(nH)| ∝
∑
n

∑
λ

∑
ηGST

|R̂n(nH,α; λ, ηGST) − Rn(nH; λ, ηGST)|

+ |T̂n(nH,α; λ, ηGST) − Tn(nH; λ, ηGST)|.
(1)
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Fig. 3. Simulations of the reflectance (columns (a) and (b)) and absolute error (column (c))
for an H = 0.5 µm cross-section of the HCM parameter space with λ = 2 µm s-polarized
light incident normal on the 1D GST grating in the amorphous phase-state. The HCM
parameter space is bounded by the EM regime (green), diffraction regime (blue), and the
unphysical parameter space (gray). In column (a), (a.0) is the RCWA simulated reflectance
using nH = 15 and all plots below (i.e. (a.1-a.5)) show the various samplings α used for
SPN training. In column (b), (b.0) is the RCWA simulated reflectance using nH = 51 and all
plots below (i.e. (b.1-b.5)) are the SPN predicted reflectance that were trained using the data
from (a.1-a.5). In column (c), (c.0) is the absolute error between the two RCWA simulations
and all plots below (i.e. (c.1-c.5)) are the SPN absolute errors.
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Fig. 4. The first four (m ∈ {1, 2, 3, 4}) moments, E[|Φ̂ − Φ|m], of the absolute error for the
state {1D, 0◦, s}. The subplots show (a) the mean, µ; (b) the variance, σ2; (c) the skewness,
γ; and (d) the kurtosis, κ, of the absolute error between SPN and RCWA spectral simulations
of various nH (red, blue, and green lines) and α, as well as the absolute error of RCWA
nH = 15 with respect to the ground truth RCWA nH = 51 (black dashed line).

Dividing the RHS of Eq. (1) by the product of the total number of device designs, wavelengths,
and phase-states will yield the exact MAE. The total number of devices can be found in the
HCM column of Table 2, while the total number of wavelengths is 501, as determined from
Table 1, and the total number of phase-states is two (e.g. aGST and cGST). For {θ = 0◦, s},
this value is 1.14 × 106 × 501 × 2 = 1.14 × 109. As expected the MAE of Φ̂(51,α) vs. Φ(51)
continues to decrease for larger training set sizes. However, this is not true for SPNs trained
on various fractions of Φ(15) data, Φ̂(15,α). Somewhat unexpectedly, the Φ̂(15,α) vs. Φ(51)
MAE decreases up to the training set size α = 2%. Above this, the predictions become further
from the ground truth. Yet, we see that Φ̂(15,α) continues to decrease its MAE when compared
to Φ(15) simulations. The conclusion drawn is that as the training set size increases past 2%,
Φ̂(15,α>2%) begins to over-predict the partially converged Φ(15) data. By this, we mean that it
"learns" the numerical oscillation errors of Φ(15) and therefore begins to more poorly predict the
ground truth. This trend is further confirmed from the variance of the absolute error, σ2, shown
in Fig. 4(b). This suggests that not only does the SPN data MAE decrease up to α ≤ 2% before
it begins to overfit the approximate Φ(15) spectra, but so too does the spread of the error. In
addition, the variance of the Φ̂(15, 2%) error is the same as Φ(15).
Surprisingly, this suggests when training SPNs using coarser computational data, it is better

practice to under-sample rather than over-sample the space. The most accurate SPN requiring
the least computational time was Φ̂(15, 2%) having an MAE of (1.74 ± 2.99)%. While Φ̂(51,α)
clearly shows greater accuracy for all α, in order to achieve a similar MAE as Φ̂(15, 2%) would
require α ≈ 1%. As a result, Φ̂(15, 2%) and Φ̂(51, 1%) give roughly the same accuracy to the
ground truth; however, obtaining training data for Φ̂(15, 2%) is 20× faster as it only requires
nH = 15. Interestingly, while the first and second moments show minimization at α = 2%, the
third and fourth moments, skewness γ and kurtosis κ, continue to increase as α increases (Figs.
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4(c,d)). Since γ and κ are normalized with respect to σ, only errors greater than σ will contribute
to the skewness and kurtosis. As the SPN data gets better at predicting, such that the MAE and
its deviation decreases, the rate of decrease in larger errors is slower than that of the rate of
variance decrease. Consequently, the "tailedness" of the error distribution grows and either more
outliers exist outside of the deviation or those that lie outside of the deviation lie further from
the deviation as the error variance decreases. However, the Φ(15) absolute errors have an even
heavier tail than the SPN data due to the fact that most of Φ(15) is converged, leading to small µ
and σ, except for regions of large spectral gradients (seen in Fig. 3(c.0)), which lead to large
errors that act as outliers. Further discussion of the absolute error distributions are discussed in
Appendix D.

3.2. SPN Benchmarking: Predictions from a merit function

In the previous section, SPNs were trained to mimic high resolution RCWA simulation with
average accuracy of ≈ 98%. Interestingly, achieving high predictive power only required a sparse
sampling of coarsely resolved RCWA training data. However, the imprecision was most severe
around areas of high reflectance and transmittance gradients. This can be potentially problematic
when trying to identify designs with specific desired qualities. It is feasible that an optimal SPN
that exhibits a low average spectral error may still diverge greatly at λ = 2 µm and consequently
miss the optimal switchable mirror design. Ultimately, we want to decipher whether such SPNs
are still viable for finding desired devices, such as our switchable mirror at λ = 2 µm, and if
enough predictive robustness has been encoded so that they can still identify a neighborhood of
designs subject to high reflection and transmission merit functions. To do this, we define an L2
normalized merit function so that one GST phase-state is compared to an optimal reflectance of 1
and the opposite phase-state is compared an optimal transmittance of 1. This device performance
merit function is defined as

| |Φ(λ)| |2 = min


√
1
2
[
(1 − R(λ, ηaGST))2 + (1 − T(λ, ηcGST))2

]√
1
2
[
(1 − R(λ, ηcGST))2 + (1 − T(λ, ηaGST))2

]  . (2)

Since we do not know beforehand which GST phase-state is best suited as a mirror or window,
Eq. (2) calculates both possibilities and keeps the minimum. In addition, the L2 merit function
conveys GST-state dependent reflection and transmission switching ability across the entire
wavelength range. Since our interest is in a switching mirror at λ = 2 µm, we only compute the
value at | |Φ(λ = 2 µm)| |2. Effectively, this results in a single numerical value bound between
[0,1] for each Ξ, where 0 represents a perfect switching mirror at λ = 2 µm. We calculate this
value for every ground truth design, Φ(51), and the corresponding SPNs, Φ̂(15,α). The designs
can then be sorted from minimum to maximum | |Φ| |2, and clustered in the geometric design
space, Ξ. After sorting the ground truth designs, we grab the top N devices. We then repeat
this for the SPN predictions, where M SPN predicted optimal designs are corroborated with the
ground truth N designs. We expectM ≤ N with boundary casesM = N representing perfect SPN
switchable mirror predictive power andM = 0 conveying that none of the SPN’s top N designs
are corroborated by the ground truth.
The top N switchable mirror designs were investigated within the range 1 ≤ N ≤ 5 × 104.

Figure 5(a) plots an example the ground truth best N = 1000 switchable mirror designs (cluster
in blue) using Φ(51) data compared to the top 1000 designs predicted using various SPN data
(cluster in red). M is the number of designs that exist in both the Φ(51) and Φ̂(15,α) top 1000
designs (i.e. cluster overlap). The ratioM/N is plotted in Fig. 5(b). The solid black line with
squares shows how much overlap there is between Φ(15) and Φ(51) top N designs. We see Φ(15)
clearly performs better (i.e. has better cluster overlap for each value of N) than all Φ̂(15,α),
which is to be expected since the Φ(15) data was used to train each of the SPNs.



Research Article Vol. 28, No. 17 / 17 August 2020 / Optics Express 24641

Fig. 5. (a) An example of the clustering of 1D GST bars geometric parameters for the top N
= 1000 best switchable mirror designs based on RCWA and SPN spectral data. SPN and
RCWA top N designs (b) complete cluster overlap ratio M/N and (c) "closeness" to overlap
WMID n(α,N) are shown. The dashed black lines are the expected values if N designs were
randomly selected from the HCM parameter space.

For 2<N<100 we see that in Fig. 5(b) Φ̂(15, 2%) has largerM/N values when compared to
the other SPNs and begins to correctly identify top designs for smaller cluster sizes. Training
set sizes of 0.5%, 1%, and 3% all share similarM/N plots, requiring N>10 before we see any
overlap with the ground truth (M/N>0), while α = 0.1% clearly performs the worst and requires
larger cluster sizes of N>100 before we begin to see any overlap with the ground truth’s (i.e.
Φ(51)) top N designs. As N increases we would expect all SPNs to have a larger overlap with
the ground truth and for M/N to converge to one, which explains why for N>100 the training
set sizes 0.5%, 1%, 2%, and 3% all perform roughly the same with aM/N>50% overlap with
Φ(51). As N increases even further, we would eventually expect Φ̂(15, 0.1%) to have a similar
M/N as the other SPNs. We would expect this trend even if we were to just randomly select N
device geometries and compare them to the ground truth’s top N designs. The probability of
randomly selecting any device design out the HCM parameter space is 1/S, (S being the total
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number of device designs taken from Table 2) so that the probability of all randomly selected N
designs are the Φ(51) top N designs is N/S. Thus, for randomly selecting N designs we would
expectM/N = N/S, which is plotted in Fig. 5(b) as a dashed black line. While this shows that
even randomly selecting N designs will show greaterM/N cluster overlap as N increases, since
the number of designs is S ≈ 106, N would need to be larger than 10,000 in order to even show
a 1% cluster overlap with the ground truth’s top N designs. This shows that all SPNs begin to
show M/N cluster overlap at cluster sizes many orders of magnitude smaller than if one were to
randomly select designs from the HCM parameter space.
The cluster overlapM/N corroborates what we saw with the MAE in Sec. 3.1 and gives us

confidence that not only does Φ̂(15, 2%) on average best predict the overall spectra, but this
spectra can be trusted specifically at λ = 2 µm in order to select several optimal switchable
reflectors at the desired wavelength. Notice, however, that M/N = 0 for the first few top N
designs. This suggests that using the SPN to find a few of the top best performing switchable
designs (i.e. small N) may fall short and not in fact find any of the ground truth best designs
determined from the Φ(51) data. Nevertheless, relying solely on M/N is limited because it only
compares complete cluster overlap and doesn’t take into account how close the SPN predicted
designs are to acceptable designs. As a result, we will show that while the SPN may not find
the absolute best performing devices, the top designs determined from the SPN data are "close
enough", performing similar to the ground truth designs and the differences in metasurface
geometries may even in fact fall well within any sort of fabrication tolerances.
To measure the "closeness" between the SPN predicted and ground truth top designs, we

calculate the average ranking number, n, of the top N designs and find the weighted difference
between that of the ground truth, Φ(51), and the various SPNs shown in Fig. 5(c). All designs in
the HCM parameter space are sorted and indexed using L2 normalization (Eq. (3)) of the Φ(51)
spectral data. Thus, the ground truth topN designs are perfectly sorted such that their average index
is given by nΦ(51)(N) =

∑N
n=1 n/N = (N + 1)/2. Next the top N designs predicted using the SPN

spectral data is compared to the ground truth and indexed appropriately. The average of the SPN’s
indices n

Φ̂(15,α)(N) depends on the various SPNs used, where α ∈ {0.1%, 0.5%, 1%, 2%, 3%}.
The weighted mean index difference (WMID) of the top N sorted design indices between RCWA
and SPN data is given by

n(α,N) =
n
Φ̂(15,α)(N) − nΦ(51)(N)

nΦ(51)
=

n
Φ̂(15,α)(N)
nΦ(51)

− 1 =
2n
Φ̂(15,α)(N)
N + 1

− 1. (3)

For example, the true top N = 5 designs determined from Φ(51) are indexed as {1, 2, 3, 4, 5}
and their average is nΦ(51)(5) = (5 + 1)/2 = 3. However, for Φ̂(15, 2%) the top 5 predicted
designs are indexed as {8, 93, 18, 66, 4}. This means that the SPN’s predicted 1st best design
was in fact the 8th best design, the SPN’s predicted 2nd best design was in fact the 93rd best
design, and so forth. The average SPN sorted index is n

Φ̂(15,2%)(5) = 37.8 and the WMID given
by Eq. (2) is n(2%, 5) = 2(37.8)/(5 + 1) − 1 = 11.6. This implies that the difference between
the true top N = 5 best designs based on Φ(51) data and that predicted using Φ̂(15, 2%) was
off by 11.6×. This method is plotted in Fig. 5(c) and gives another way to compare clusters
beyond strict overlap (M/N). Smaller n(α,N) means the SPN’s top designs are more tightly
clustered around the true top designs, even if there is not complete overlap. As can be seen in
Fig. 5(b), while none of the SPN’s predicted best design (N = 1) are the true best design, we see
that Φ̂(15, 2%) picked a top design that was closer to the true best design compared to any other
SPN based on the WMID of their sorted index values (Fig. 5(c)). In particular, the single best
design determined using Φ̂(15, 2%) has a WMID an order of magnitude closer to the ground
truth compared to Φ̂(15, 0.5%), Φ̂(15, 1%), and Φ̂(15, 3%), and two orders of magnitude closer
to the ground truth compared to Φ̂(15, 0.1%). In addition, Φ̂(15, 2%) continues to have at least
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an order of magnitude smaller WMID compared to other the SPNs up to N = 500. For N ≥ 500
all SPNs with α<3% show similar clustering with small WMIDs, n(α<3%,N ≥ 500) ≤ 1%.

If one were to randomly select N designs from the HCM parameter space, the expected average
index would be (S + 1)/2, where again S is the total number of designs in the HCM space. Thus,
the WMID of N randomly selected designs is nrand(N) = ((S + 1)/2 − nΦ(51)(N))/nΦ(51)(N) =
(S−N)/(N + 1), shown as a black dashed line in Fig. 5(c). Since S ≈ 106, then nrand(1) ≈ 5× 105
and all SPN’s WMIDs are several orders of magnitude closer to the Φ(51) best design. As N
increases, all SPN’s n(α,N) decrease and converge toward zero, which is to be expected even
of randomly sampling. Though, we can safely say that all SPN’s perform better than random
sampling up to N = 106, at which point nrand(N ≥ 106) ≤ 1 and comparable to the SPNs. Figure
5(c) also corroborates the findings of Sec. 3.1, where a training set size of α = 2% produces an
SPN that not only predicts spectra with the minimum MAE, but also gives the best switchable
mirror design at λ = 2 µm when selected using the | |Φ(2 µm)| |2 merit function (Eq. (2)). While
the SPN’s best predicted design may not be the true best design based on Φ(51) data, we can
accept with confidence that the predicted best design will be comparable in performance to that
of the ground truth.

3.3. Retrieving optimal 1D grating switchable mirror designs

The spectra of optimal switchable mirror designs for s- and p-polarized light of λ = 2 µm
incident at angles θ ∈ {0◦, 45◦} on a 1D grating of GST bars are shown in Fig. 6 in four
quadrants—I:{0◦, s}, II:{0◦, p}, III:{45◦, s}, IV:{45◦, p}. Each {θ,P} quadrant shows four plots,
of which the left column (purple and green lines) is the spectra of the best switchable mirror
design determined from Φ(51) and the right column (red and green lines) is the spectra of the
best switchable mirror design determined from Φ̂(15, 2%). The device geometry Ξ = {X,H,Λ}
of the associated aGST and cGST spectra is labeled above each paired plot. Also, Φ(51) spectral
simulations of the top design predicted from Φ̂(15, 2%) are plotted (black dashed and dash-dotted
lines) with the SPN predictions for comparison. As can be seen in Fig. 6, the SPN does
a remarkable job at predicting the spectra with an enough accuracy so that by using the L2
merit function to select the top switchable mirror design we were able to find designs that were
reasonably close to the ground truth top designs, with the exception to {45◦, s} in quadrant III. For
quadrants I, II, and IV we see that the feature sizes of the top designs determined from Φ̂(15, 2%)
data are within several tens of nanometers of the true top designs. Moreover, for all device
geometries shown and at λ = 2 µm, the amorphous GST phase-state has a maximum normalized
power flux (regardless of reflectance or transmittance) of >95%, whereas the crystalline GST
phase-state has a maximum normalized power flux of >80%. The cGST phase-state suffers
performance due to having more absorption than the aGST phase-state (refer to Appendix B.).
Depending on the incident light inclination angle and polarization, either of the aGST or cGST
states can act as a mirror or window.

The outlier in the SPN and RCWA predicted best switchable mirror designs is for the {45◦, s}
case. We see in quadrant III of Fig. 6 that the SPN’s predicted top design has a lattice spacing
off by nearly 100 nm and a height off by 200 nm from the true best design. By observing the
true best design spectra (green and purple lines), we see that there is a resonance at λ = 2 µm
for the aGST state. Due to the high-Q quality factor of the spectra at this wavelength and the
associated large spectral gradient, the SPN misses this feature. This is seen in the adjacent aGST
plot, where the SPN predicted spectra (red and blue lines) do not show the sharp resonance that
truly exists near λ ≈ 1.75 µm (black dashed and dash-dotted lines). For this reason, when relying
on the SPN spectral data to select the optimal switchable mirror design, we see a different device
geometry that shifts the spectra so that the broader transmission peak (in blue) lies at λ = 2 µm
and the missed high resonance peak is shifted to a different λ. Nevertheless, while the SPN’s
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Fig. 6. Spectra comparisons of the true best switchable mirror designs using Φ(51) data
(purple and green lines) to that predicted using Φ̂(15, 2%) data (red and blue lines) for the
four permutations of incident light angle and polarization. The Φ(51) spectra for the SPN
predicted best design is overlayed (black dashed and dash-dotted lines). The metasurface
geometry Ξ = {X,H,Λ} is given above each aGST/cGST paired spectra in units of µm.

predicted top design differs from the true top design, the design predicted using Φ̂(15, 2%) still
produces comparable switching capabilities as the true top design.

4. 2D GST case: Retrieving the optimal polarization and angle independent pil-
lar array switchable mirror design

We randomly sampled the HCM regime parameter space of the 2D pillar array for normal
incidence, as well as for 45◦, for s- and p-polarizations, where we neglected simulating the
{0◦, p} case because it would have been identical to the {0◦, s} case. Table 3 shows the number
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of simulations necessary to fill the HCM regime for the spectral range 1 µm ≤ λ ≤ 3 µm and
pillar height range 0.01 µm ≤ H ≤ 1 µm. Like the 1D case, the 2D case also has a reduction
in the non-diffrative regime of ≈ 50% when using modal analysis and restricting the parameter
space to the HCM regime. While the size of the the HCM parameter space of the 2D GST
pillar array arranged in a square lattice is comparable to that of the 1D GST grating, due to the
increases dimensionality of the 2D case, what would have taken nH harmonics to lead to spectral
convergence for the 1D case would require at least n2H harmonics to do the same for the 2D case.
Therefore, we need many more harmonics (152 = 225 as determined from Sec. 3) to approach the
same level of convergence seen with the 1D grating RCWA simulations. Moreover, since the time
of convergence is proportional to the number of harmonics cubed (t ∝ n3H) as also demonstrated
in Sec. 3, then tn2H/tnH = (n

2
H)

3/n3H = n3H, where nH = 15 and n2H = 225 for the 1D and 2D cases,
respectively. This means that the 2D case takes ≈ 3375× longer to simulate. Hence, what had
taken Φ(15) (1D case) hours to simulate the HCM parameter space would have taken Φ(152) (2D
case) about a year to simulate. Fortunately, we needed only to sample a small fraction of the
2D pillar array HCM parameter space to train our SPN. We chose to randomly sample α ≈ 2%
of the 2D pillar array HCM parameter space since our 1D simulations had suggested this to be
optimal for minimizing SPN predicting inaccuracies (i.e. minimal MAE). Thus, after days of
RCWA simulations, we were able to train our SPN and fill the rest of the 2D pillar array HCM
parameter space using the SPN in minutes. In Table 3 the number of simulations that we actually
performed, and time to complete these simulations, are shown in bold.

Table 3. Training data collection: 2D GST pillar array metasurface.

Amount of obtained data in format Ψ Computetime

θ P NDa HCMb HCM/ND RSc RS/HCM HCM RS

(◦) {s, p} (million) (million) (%) (thousand) (%) (days) (days)

0 s 2.03 1.19 58.6 25.21 2.2 363.9 7.7
45 s 1.19 0.49 41.2 13.67 2.8 149.8 4.2
45 p 1.19 0.55 46.2 14.41 2.6 168.2 4.4

aND: nondiffractive regime consists of EM and HCM; EM: effective medium regime;
bHCM: high contrast metasurface regime;
cRS: random sampling of HCM.

The three SPNs—one for each of the {0◦, s}, {45◦, s}, and {45◦, p} cases—were trained on
90% of the randomly sampled (RS) design data (Table 3) and 10% was put aside to validate
that the SPNs were not overfitting the training data. Using the validation data we were able to
compare the SPN predictions to the ground truth. Unlike the 1D case, we are unable to simulate
the entire HCM parameter space with RCWA and must assume that the validation data is an
accurate representation of the entire HCM space. For the {0◦, s}, {45◦, s}, and {45◦, p} cases we
found the MAEs to be (1.69 ± 3.38)%, (1.69 ± 3.74)%, and (1.57 ± 3.67)%, respectively. This
is comparable to the accuracies seen by the 1D GST grating SPNs in Sec. 3.1, Fig. 4. Using
the L2 error function defined in Eq. (3), we sorted the designs from best to worst based on their
switchable mirror capabilities. Similarity in predicted top switchable mirror design selected
for each of the three cases (refer to Appendix E.) suggested there existed a single design that
was polarization and angle independent. Consequently, a new L2 function was defined as an
average of the individual error functions, | |Φ| |2 =

(
| |Φ{0◦,s} | |2 + | |Φ{45◦,s} | |2 + | |Φ{45◦,p} | |2

)
/3.

This allowed us to comb through all the data from the three SPN predicted HCM spectra and
select a design that optimized switching capabilities for all three cases. From this we determined
a single optimal design X = 0.195 µm, H = 0.33 µm, Λ = 0.45 µm that exhibited switching
capabilities for the three angle and polarization combinations, whose spectra is shown in Fig.
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7(a). As can be seen, the SPN does a remarkable job at predicting the reflection and transmission
spectra (red and blue lines, respectively) when compared to the RCWA simulations (dashed and
dash-dotted). Figure 7(b) shows the polarization, P, inclination angle, θ, and azimuthal angle,
φ, dependence of the aGST state transmittance and the cGST state reflectance. As can be seen,
there is no φ dependence and very little θ dependence. For all φ and for θ ≤ 45◦ this metasurface
design shows s-polarized light has 88% . T . 95% for aGST and 78% . R . 83% for cGST,
and p-polarized light has 95% . T . 98% for aGST and 69% . R . 78% for cGST. Using
the SPN to exhaustively fill the HCM parameter space allowed us to discover a GST pillar array

Fig. 7. Spectral plots of the 2D pillar array metasurface (X = 0.195 µm, H = 0.33 µm,
Λ = 0.45 µm) optimized as an angle and polarization independent switchable mirror
using Φ̂(152,≈ 2%) data. (a) SPN predicted reflectance (red line) and transmittance (blue
line), along with the approximated ground truth Φ(152) reflectance (black dashed line) and
transmittance (dash-dotted line). (b) 2D pillar array of RCWA Φ(152) optimal switchable
mirror design spectral plots for λ = 2 µm s- and p-polarized light. Shown are the amorphous
state transmittance and crystalline state reflectance.
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metasurface design that is capable of acting as a switchable mirror for any light polarization
incident at angles θ ≤ 45◦.

5. Conclusions

We have investigated a general approach for using an SPN to discover novel dynamic and selective
optical components, and demonstrated its utility by optimizing a GST metasurface for use as a
switchable mirror. This approach affords us the opportunity to search a parameterized feature
space many orders of magnitude faster than with conventional approaches. For our dynamic
mirror baseline metasurface features, we made use of both a linear bar and a cylindrical pillar
geometry and trained an ANN to simulate their optical behavior as a switchable mirror. Parameter
spaces were constrained to the high-contrast metasurface regime using modal analysis, effectively
reducing our parameter space in half and limiting our search area only to regions that could
produce high reflectivity and transmissivity. Through a comprehensive study of the 1D GST
grating we found that a coarser simulation that used less harmonics (nH = 15), and a sampling
size of only about a 2% of the HCM parameter space, was required to train the SPN to accurately
interpolate the full range of the design space with an MAE of <2%. Knowledge from the 1D GST
study was then used for the 2D case, where less harmonics and small HCM sampling, along with
the SPN predicting capabilities, greatly improved simulation times and allowed us to simulate the
entire 2D GST pillar array metasurface parameter space when it would have been impossible to
do otherwise. The ability to completely fill a large multidimensional parameter space allowed us
to then select the best switchable mirror design possible. Four separate 1D GST grating designs
were found for the four permutations of light inclination angles, {0◦, 45◦}, and polarizations,
{s, p}, which showed roughly between 80% – 95% reflectance and transmittance between the
two phase-states for λ = 2 µm. In addition, a single 2D GST pillar array was found that showed
roughly between 75% – 95% reflectance and transmittance between the two phase-states for all
azimuthal angles, φ, and for inclination angles θ ≤ 45◦.

Though, these trained SPNs have the added benefit that they require less memory to store than
saving the entire RCWA parameter space spectral data. Our SPNs had nearly 80 million trained
weights, whereas the entire HCM spectra would require roughly 2 billion data points—each
individual spectra has about 2000 elements and there are about one million metasurface deigns
in the HCM space per simulation group—making the SPNs about 25× smaller. In addition, it
takes the SPN only minutes to re-simulate the entire HCM spectra. This given flexibility would
be lost had we taken a genetic algorithm approach to find an optimal switchable mirror device.
Since the entire HCM spectra can be quickly retrieved via the SPN, one can define any number
of merit functions to find a device with a specific purpose and performance without the need to
do time consuming physics simulations.
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Appendix A List of important symbols

λ Excitation planewave wavelength in range [1 µm, 2 µm]; refer to Table 1

θ Incident light inclination angle in set {0◦, 45◦}

φ Incident light azimuthal angle

P Collection of polarization states, {s, p}

D Dimensions of GST metasurface: 1D for grating, 2D for pillar array

X Feature half-width (radius) for 1D (2D) metasurface; refer to Table 1

H Feature height of the GST metasurface in range [0.05 µm, 1 µm]; refer to
Table 1

Λ Lattice spacing of the GST metasurface; refer to Table 1

X′ Scaled half-width (radius), X/Λ in range [0, 0.5]; refer to Table 1

ηGST(λ)
The set of the wavelength dependent complex refractive index for amorphous
and crystalline GST phase-states, {ηaGST(λ), ηcGST(λ)}

nH Number of spatial harmonics used in RCWA simulation

α Fraction of the HCM parameter space used for SPN training

Ξ Collection of device geometric parameters, {X,H,Λ}, used for SPN inputs

Φ(nH)
Collection of RCWA spectra simulated with nH harmonics and used for train-
ing the SPN outputs, {R(λ, ηaGST),T(λ, ηaGST),R(λ, ηcGST),T(λ, ηcGST)}

Φ̂(nH,α)
Collection of SPN spectra that was trained with α fraction of Φ(nH) data,
{R̂(λ, ηaGST), T̂(λ, ηaGST), R̂(λ, ηcGST), T̂(λ, ηcGST)}

Ψ Collection of SPN input and output training data, {Ξ,Φ}

µ
Mean absolute error (MAE) between SPN and RCWA spectra defined by Eq.
(1), aka L1 norm

σ Standard deviation of absolute errors

γ Skewness of absolute errors

κ Kurtosis of absolute errors

|Φ(15) − Φ(51)| The MAE, µ, between partially converged RCWA spectra and the ground
truth

|Φ̂(nH,α) − Φ(51)| The MAE, µ, between SPN spectra and the ground truth

| |Φ(λ)| |2
L2 norm merit function used to rank optimal switchable mirror designs at
wavelength λ, defined by Eq. (2)

| |Φ| |2
L2 norm merit function used to rank optimal angle and polarization indepen-
dent 2D switchable mirror designs at λ = 2 µm, (| |Φ{0◦,s} | |2+ | |Φ{45◦,s} | |2+
| |Φ{45◦,p} | |2)/3

N Number of top designs selected after sorting using L2 norm merit function,
| |Φ(λ)| |2

M Number of SPN’s top N designs that are in common with the ground truth

S Total number device designs in HCM parameter space; refer to Table 2

nΦ(51)(N) Average sorted index of top N designs, (N + 1)/2

n
Φ̂(15,α)(N) Average sorted index of SPN predicted top N designs

n(α,N) Weighted mean index difference (WMID) between SPN and ground truth,
Eq. (3)
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Appendix B GST material dispersion

GST can refer to several different ternary mixtures of germanium, antimony, and tellurium (Fig.
8(a)). The material dispersion implemented in our simulations is based off a common Ge2Sb2Te5
formulation. The wavelength dependent real and imaginary refractive index values of both
phase-states, ηaGST(λ) and ηcGST(λ), are displayed in Figs. 8(b,c), along with the refractive index
values of the alumina substrate, Al2O3. The Al2O3 refractive index values were taken from Ref.
[77].

Fig. 8. Material Dispersion curves used in our simulations. (a) The Ge-Sb-Te ternary
diagram, where the specific GSTmixture we used in this manuscript, Ge2Sb2Te5, is displayed
in red. The (b) real and (c) imaginary refractive index values for both the amorphous and
crystalline GST phase-states, as well as Al2O3, are shown as red, blue, and green lines,
respectively.

Appendix C Parameter space restriction using PhC bands

As briefly discussed in Sec. 2.1, the HCM regime exhibits high reflectivity and transmissivity
due to the interference of WGAMs at the metasurface interface. A more thorough explanation
can be found in Refs. [23,72,73]. Figure 9 shows an example of a dispersion relationship between
normalized wavevectors kxΛ/(2π), kzΛ/(2π), and Λ/λ for the first six modes using the MPB
plane-wave expansion method. In this example we simulate a 1D waveguide array (infinite in y
and z, and periodic in x) of alternating air and GST layers that has a scaled width X/Λ = 0.5
and uses the GST refractive index ηaGST(λ = 2 µm). MPB scales all dimensions by the lattice
spacing Λ. However, GST is dispersive and for our modal analysis we used ηaGST(λ = 2 µm).
Thus, when we look at cutoff values of Λ/λ in MPB, we are actually describing cutoff values for
Λ since λ is fixed. This is how we retrieved the Λlow discussed in Sec. 2.1.

Figure 9(b) shows the WGAM dispersions. For light incident at θ = 0◦ on the 1D GST grating,
WGAMs would be exited propagating in the kz direction, where kx = 0. This is shown for s- and
p-polarizations as red and blue lines, respectively. However, for light incident at θ = 45◦ on
the 1D GST grating, WGAMs would be exited propagating in the kz direction, but there would
also be a kx component determined by kx = (2π/λ) sin θ. This changes the dispersion slightly as
shown by the black dashed and dotted lines for s- and p-polarizations, respectively. While the
angle of incidence causes a change in the modal Λ/λ cutoff values, shown in Fig. 9(b) as circles
for 0◦ and squares for 45◦, the polarization does not. This is better understood by noticing the
relationship between WGAMs and photonic crystal (PhC) modes.

The 1D GST WGA can also be treated as a 1D PhC (Bragg stack) by observing the dispersion
of kx through the material and keeping kz = 0. This results in the periodic PhC band diagram
shown in Fig. 9(c). Since kz = 0, the PhC bands map out the modal Λ/λ cutoff values of the
WGAMs for different incident angles, θ. By extending the PhC band beyond the irreducible
Brillouin zone (IBZ) and using the relationship kx = (2π/λ) sin θ, one can determine Λ/λ cutoff
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Fig. 9. Band diagrams for a 1D aGSTwaveguide array (aka Bragg stack, 1D photonic crystal)
that is infinite in y and z, and periodic in x, with λ = 2 µm and X/Λ = 0.5. (a) The dispersion
relationship between kzΛ/(2π), kxΛ/(2π), and Λ/λ for s- and p-polarized light, where the
different colored sheets represent different modal bands. The insert shows a schematic of the
WGA. (b) The WGAMs for kxΛ/(2π) = 0 (colored lines) and kxΛ/(2π) = (Λ/λ) sin (45◦)
(black dashed and dotted lines). The WGAMs’ Λ/λ cutoff values are marked as colored
circles and squares, as also shown in the associated diagram (c). The gray region marks the
area below the aGST light-line and the green region marks the area below the air light-line.
(c) The photonic crystal band diagram for kz = 0. Above the air light-line (white region)
shows the kx angle dependence, kxΛ/(2π) = (Λ/λ) sin θ, where the θ = 0◦ circles and
θ = 45◦ squares mark the WGAMs’ Λ/λ cutoff values seen in (b).
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for each WGAM from kxΛ/(2π) = (Λ/λ) sin θ. The values of Λ/λ for the various modes with
light incident at θ = 0◦ and 45◦ are marked as circles and squares, respectively, in Fig. 9(c).
These marked values are the cutoff Λ/λ values seen in Fig. 9(b). Thus, when trying to determine
the smallest value of Λlow such that there are at least two WGAMs that propagate within the 1D
GST grating metasurface, one simply needs to solve for the first excited PhC band (blue line in
Fig. 9(c)) and take the value of Λ/λ at kxΛ/(2π) = (Λ/λ) sin θ, where in our example λ = 2 µm
and θ ∈ {0◦, 45◦}.

In addition, since the cutoff value for Λlow is determined in the PhC scheme when kz = 0, there
is only propagation in kx, and hence, transverse electric and magnetic fields will lie solely in the
yz-plane. However, the 1D GST PhC is invariant in the yz-plane and thus behaves identically for
s- and p-polarizations. Again, this is seen in Fig. 9(b), where s- and p-polarizations of the same
incident angle, θ, have different WGA dispersions, but share the same cutoff Λ/λ values. Thus, s-
and p-polarizations with the same θ will have the same HCM parameter space size (shown in
Table 2). Though, in the case of the 2D cylindrical GST WGA (i.e. cylinders that are periodic
in x and y, and infinite in z), symmetry between the y and z dimension is broken, and the PhC
band diagram becomes nondegenerate. There is a split between s- and p-polarization Λ/λ cutoff
values, resulting in different HCM parameter space sizes that can be observed in Table 3.

Appendix D SPN error dispersion

As in Sec. 3.1, we will only discuss the {1D, 0◦, s} case. The absolute errors of the Φ(15)
and Φ̂(15,α) with respect to the ground truth, Φ(51), were binned between [0,1] with bin sizes
of 0.001, and the counts normalized so that the integration over all bins equaled one. This
probability density function is shown in Fig. 10(a). As expected, the insert shows that Φ(15)
has a much higher probability for small errors (<0.3%) when compared to any of the SPNs.
However, Φ(15) also shows a greater probability for extremely large errors (>75%) when also
compared to any of the SPNs—albeit the probability of Φ(15) having larger errors is is roughly
three orders of magnitude less than the probability of having smaller errors. By referring to the
cumulative distribution function in Fig. 10(b), we see that nearly 50% of the Φ(15) absolute error

Fig. 10. (a) The probability density function of the absolute error of the approximate Φ(15)
(black line) and Φ̂(15,α) (colored lines) with the ground truth Φ(51). The insert emphasizes
small absolute error, whereas the main figure emphasizes the PDF tail. (b) The cumulative
distribution function of the various absolute errors.
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was <0.1% and about 80% had error <1%. Yet Φ(15) has a MAE of ≈ 0.9% and a variance
comparable to that of Φ̂(15, 2%) (Fig. 4(a,b)). This shows that the vast majority of the Φ(15) has
converged to the ground truth Φ(51), but that there also exists outliers that exhibit very large
error magnitudes, which can be seen in regions that have large spectral gradients (Fig. 3(a.0-c.0).
These outliers contribute to the larger variance seen by Φ(15). The SPNs show a greater spread
in error magnitudes, insofar that the probability of absolute errors between 0.3% and 75% is
greater than that of Φ(15). Moreover, by increasing the training set size, α, of the SPNs up to
2%, the PDF tail appears to decrease. This suggests that the SPN is increasing its accuracy with
respect to the ground truth and not fitting the portions of the Φ(15) spectra that have large errors.
Nevertheless, the kurtosis of Φ̂(15,α) does consistently increase as α increases due to the rapid
decrease in the variance (Fig. 4(d)). From Fig. 10(b) we see that roughly 95% of the Φ̂(15, 2%)
spectra have an absolute error less than 5.7%. In other words, 95% of the spectral data lies within
one standard deviation from the MAE, (2.1 ± 3.6)%, taken from Figs. 4(a,b).

Appendix E Optimal 2D GST pillar array switchable mirrors

As discussed in Sec. 4, three separate SPNs were trained for the 2D pillar array metasurface,
one for each of the states {θ = 0◦,P = s}, {45◦, s}, {45◦, p}, where {0◦, p} was neglected due to
symmetry. These SPNs were then used to fill the entire HCM parameter space and with the L2
norm function the optimal design for each state was determined. Figure 11 shows the spectra for
the top design for each of the three states. The optimal 2D metasurface geometries for the {0◦, s},
{45◦, s}, {45◦, p} states were Ξ = {0.2 µm, 0.33 µm, 0.48 µm}, {0.21 µm, 0.33 µm, 0.5 µm},
and {0.18 µm, 0.34 µm, 0.43 µm}, respectively, where Ξ = {X,H,Λ}. As can be seen, each of
the GST metasurface parameters of these three designs are within a few tens of nanometers of
each other. This motivated us to define a new L2 error function and search for a single 2D pillar
array that acted as a switchable mirror for all angles and polarizations.
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Fig. 11. Optimal switchable mirror 2D pillar array designs and spectra for λ = 2 µm
determined from Φ̂(152,≈ 2%) data. For light incident parameters (a) {0◦, s} the
optimal design is Ξ = {0.2 µm, 0.33 µm, 0.48 µm}; (b) {45◦, s} the optimal de-
sign is Ξ = {0.21 µm, 0.33 µm, 0.5 µm}; and (c) {45◦, p} the optimal design is
Ξ = {0.18 µm, 0.34 µm, 0.43 µm}.
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